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Abstract.

This doctoral thesis is concerned with some theoretical and practical questions

related to backward stochastic differential equations (BSDEs) and more specifically

their connection with some parabolic partial differential equations (PDEs). The thesis

is made of three parts.

In the first part, we study the probabilistic representation for a class of multidimen-

sional PDEs with quadratic nonlinearities of a special form. We obtain a representation

formula for the PDE solution in terms of the solutions to a Lipschitz BSDE. We then

use this representation to obtain an estimate on the gradient of the PDE solutions by

probabilistic means. In the course of our analysis, we are led to prove some results for

the associated multidimensional quadratic BSDEs, namely an existence result and a

partial uniqueness result.

In the second part, we study the well-posedness of a very general quadratic re-

flected BSDE driven by a continuous martingale. We obtain the comparison theorem,

the special comparison theorem for reflected BSDEs (which allows to compare the in-

creasing processes of two solutions), the uniqueness and existence of solutions, as well

as a stability result. The comparison theorem (from which uniqueness follows) and

the special comparison theorem are obtained through natural techniques and mini-

mal assumptions. The existence is based on a perturbative procedure, and holds for

a driver whis is Lipschitz, or slightly-superlinear, or monotone with arbitrary growth

in y. Finally, we obtain a stability result, which gives in particular a local Lipschitz

estimate in BMO for the martingale part of the solution.

In the third and last part, we study the time-discretization of BSDEs having non-

linearities that are monotone but with polynomial growth in the primary variable. We

show that in that case, the explicit Euler scheme is likely to diverge, while the im-

plicit scheme converges. In fact, by studying the family of θ-schemes, which are mixed

explicit-implicit, θ characterizing the degree of implicitness, we find that the scheme

converges when the implicit component is dominant (θ ≥ 1
2
). We then propose a tamed

explicit scheme, which converges. We show that the implicit-dominant schemes with

θ > 1
2

and our tamed explicit scheme converge with order 1
2
, while the trapezoidal

scheme (θ = 1
2
) converges with order 7

4
.
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Chapter 1

Introduction.

In this thesis, we present results obtained in the course of some of the research

projects carried by the author. This research lies in the area of backward stochastic

differential equations (abbreviated as BSDEs).

BSDEs constitute a relatively recent, dynamic and exciting area in stochastic anal-

ysis. Indeed, while BSDEs are concerned with stochastic processes, the techniques

involved are very analytic by nature, as will be seen clearly in the following. In this

regard, BSDEs lie well within stochastic analysis.

Linear BSDEs were first introduced by Bismut [6]. However their systematic study

really started with the seminal paper [65] of Pardoux and Peng. These equations

and their solutions can be understood in a number of different ways depending on the

motivations for studying them. In the context of optimal stochastic control (which was

the motivation of Bismut), they are the adjoint equations in the stochastic version of

Pontryagin’s maximum principle. It was realized very early on, since Peng [69, 70],

that BSDE solutions provide probabilistic representation for the solutions to a large

number of semilinear partial differential equations (PDEs thereafter). In fact, systems

of forward and backward stochastic differential equations (FBSDEs thereafter) really

are the probabilistic counterpart of parabolic PDEs. BSDEs also arise naturally in

mathematical finance as the most straightforward language in which to express the

replication of derivatives. Of course, BSDEs also appear often in mathematical finance

due to the fact that this field was already making great use of PDEs and stochastic

control. Finally, BSDEs are deeply connected to nonlinear expectations and dynamic

risk measures. These numerous applications make the case for studying in detail these
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equations and explain the high level of effort devoted to them, of which ours is part.

More specifically, our guiding line in this thesis will be the link between BSDEs

and parabolic PDEs. We will first study a particular class of PDEs together with

their associated BSDEs, and provide a probabilistic representation in that case. We

will then be concerned with obstacle problems. We will formulate reflected BSDEs (the

appropriate probabilistic counterpart) in a sufficiently general way so as to allow to deal

with initial value, Dirichlet boundary and Neumann boundary problems, and study

the well-posedness of reflected BSDEs in such a general context. Finally, we will come

back to a more classical setting and turn our attention to some numerical aspects. We

will study the convergence or divergence of the standard time-discretization scheme

for BSDEs, under some analytical assumptions on the nonlinearities motivated by

reaction-diffusion PDEs.

Before presenting further the research of the coming chapters, it is a good time to

recall what BSDEs are and the main results known about them.

1.1 Backward stochastic differential equations.

1.1.1 Generalities on BSDEs.

Given a time interval [0, T ], a BSDE is an equation{
dYt = −f(t, Yt, Zt)dt+ ZtdWt

YT = ξ
(1.1.1)

In the above, W is a fixed Brownian motion, on some standard filtered probability

space (Ω,F = (Ft)t∈[0,T ], P ), and we assume generally that F , which is fixed, is the

augmented filtration of W . What is given and constitute the parameters (or data) in

this equation are the terminal condition ξ (an FT -measurable random variable) and

the coefficient f (a measurable function of ω, t, y, z, although the dependence in ω is

typically not explicitly written). The coefficient f can also called the drift coefficient,

nonlinearity coefficient, the generator, or driver. What we look for, and call a solution

to the BSDE, is a pair (Yt, Zt)t∈[0,T ] of stochastic processes, which are required to be

adapted to the filtration F .

Essentially, the BSDE describes the evolution backward in time of the state variable
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Y , starting from the terminal condition ξ, and whose dynamics is governed by the drift

coefficient f . The process Z is called secondary variable, or control variable, or control

process (for reasons that will be explained below).

Naturally, the BSDE written in differential form above can be rewritten in integral

form (in fact, this is how it should rigorously be understood)

Yt = ξ +

∫ T

t

f(u, Yu, Zu)du−
∫ T

t

ZudWu . (1.1.2)

BSDEs are not SDEs with a terminal condition. The adaptedness issue.

The requirement that the solution be adapted puts severe constraints on what

kind of equation can be used for the dynamics of Y , and rules out the possibility to

conceive BSDEs as SDEs with a terminal condition instead of an initial one. After all,

one might be tempted to draw a parallel with ODEs. Considering the autonomous ODE

dyt = f(yt)dt, it does not matter whether the problem is given with an initial condition

(0, y0) or terminal condition (T, y0). Ultimately, this problem consists in finding the

curve(s) tangent to the vector field f and passing through y0. Viewed otherwise, the

two problems are equivalent by a time-reversal. This, however, cannot be done in the

context of stochastic processes, where the filtration gives a clear direction to time.

Suppose for a moment that the problem was to find a process Y such that{
dYt = −f(t, Yt, Zt)dt

YT = ξ .

This is simply an ODE. Now, let us look at the simple example where f = 0 and

ξ = WT . The only candidate solution Y would have to be constant on [0, T ] and, given

the terminal condition, we would have Yt = ξ = WT for all t, and therefore would

not be adapted. This is why it is sometimes said that the role of the variable Z is to

“correct for the adaptedness”, or to give more degrees of freedom in the definition of

a solution, so as to allow the existence of adapted solutions.

Suppose that we looked more generally at the problem of finding Y , or even (Y, Z),

satisfying {
dYt = −f(t, Yt, Zt)dt+ g(t, Yt, Zt)dWt

YT = ξ .

3



This is an SDE, for each fixed process Z. Again, in the simple example where f =

g = 0, there can be no adapted solution. The process Z must give enough freedom

in the dynamics to correct for the lack of adaptedness coming from the increment

−f(t, Yt, Zt)dt. Interestingly, although SDEs are not exactly the right way to think of

BSDEs, in their seminal paper [65] Pardoux and Peng were considering an equation

as above, but with the requirement that for fixed (t, y), the map z 7→ g(t, y, z) is a

Lipschitz bijection. That is, Z has full freedom to determine the coefficient in front of

dWt.

BSDEs as stochastic, backward ODEs.

BSDEs can be regarded as the stochastic version of a backward ODE. If one

continues the thread of the discussion above, seeing as the solution to the ODE

Yt = ξ +
∫ T
t
f(Yu)du may not be adapted, one may be tempted to consider the next

best thing and take the conditional expectation, since this is the best projection on

the correctly-measurable random variables.

Let us keep this in mind but work from the definition given above of a BSDE

(1.1.1)–(1.1.2). If (Y, Z) is a solution, then, since Y is adapted, Yt = E
(
Yt
∣∣Ft). Also,

we know that dMt = ZtdWt is the martingale part of the semimartingale Y . So (1.1.2)

implies that
Yt = E

(
ξ +

∫ T

t

f(u, Yu, Zu)du
∣∣∣Ft)

where Z is the progressively measurable process such that∫
ZdW is the martingale part of Y .

(1.1.3)

That (1.1.3) is equivalent to (1.1.1)–(1.1.2) follows from a few of lines of manipulations

and the use of the martingale representation theorem.

In this way, we see that BSDEs can be understood as backward ODEs with con-

tinuously taken conditional expectations. This view of BSDEs will find more weight

when we look at the connection with PDEs.

Martingales and nonlinear martingales.

At one extreme end of BSDEs, when f = 0, we see from (1.1.3) that the solution

Y is simply the martingale with terminal value ξ. This partly explains why, in the
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general case, one can consider the solutions to BSDEs as “nonlinear martingales”. At

the other end of the spectrum, in the case when the terminal condition ξ is not random,

and when f is not allowed to be random either, BSDEs boil down to (deterministic,

backward) ODEs.

On both ends one has a comparison property : if ξ ≤ ξ′, and if f ≤ f ′, then

Y ≤ Y ′. This holds true also for general BSDEs, so long as the coefficient f satisfies

some regularity assumptions, and is called the comparison theorem.

Well-posedness questions, known results.

In view of the many applications of BSDEs, it is a question of central importance

to know under what conditions on the coefficient f and the terminal condition ξ these

equations are well-posed (in the sense of Hadamard). That is, we want to know when

a solution exists and is unique, and we also want some continuous dependence of the

solution on the data (principally ξ).

Pardoux and Peng [65] proved that when f is Lipschitz in the variable (y, z),

uniformly in the others (i.e. ω and t), and when ξ is square integrable, then the

BSDE has a unique square-integrable solution. Their original result was reproved in a

somehow simpler way in El Karoui, Peng and Quenez [31], where the authors also gave

regularity estimates. The comparison theorem under these assumptions was obtained

in Peng [70]. Many developments took place in the following 20 years, and a few main

sets of analytical assumptions on the data (f, ξ) have been identified under which

BSDEs are usually well-behaved and the usual well-posedness results can be obtained.

Kobylanski [50] obtained the first results for quadratic BSDEs, that is to say when

the coefficient f can have at most quadratic growth in the z variable. This case occurs

naturally in finance when considering problems of utility maximization and indiffer-

ence pricing (see Hu, Imkeller and Müller [40], Rouge and El Karoui [75]). Under the

assumption that ξ is bounded, and that the dependence of f in y is Lipschitz, Koby-

lanski was able to obtain existence, comparison and uniqueness. These results were

later given a new approach by Tevzadze [77], and later on by Briand and Elie [12].

However, in the simple case of the quadratic coefficient f(z) = 1
2
γz2, the solution of

the BSDE can be written explicitly and it is seen that it is not necessary to require that

ξ be bounded, rather it should only be required to have some exponential integrability.

Briand and Hu [13] and [14] obtained the first results of existence and uniqueness for

quadratic BSDEs with unbounded (but exponentially integrable) terminal conditions.
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This analytical setting was further studied by Delbaen, Hu and Richou [25] and [26],

as well as Barrieu and El Karoui [4].

Another important analytical case is when f satisfies a monotonicy assumption in

the y variable, that is to say there exists µ > 0 such that

〈
y′ − y

∣∣f(t, y′, z)− f(t, y, z)
〉
≤ µ|y′ − y|2 ,

for all t, y, y′, z 1.

In many reaction-diffusion PDEs the nonlinearity f only depends on y, typically in

a polynomial way, and this assumption applies. Pardoux [64] and Briand and Carmona

[8] studied this case when f is Lipschitz in the variable z, uniformly in the others (i.e.

ω, t and y ), and the terminal condition is in Lp, p ≥ 2, and showed that the BSDE is

well-posed under these assumptions. Under the same assumption on the y-dependence,

but with a quadratic growth in z and a bounded terminal condition, the well-posedness

of the equation was shown by Briand, Lepeltier and San Martin [15].

All the results mentioned above concerning a quadratic dependence in z apply

only to scalar BSDEs. When f is Lipchitz in z, whether Lipschitz or monotone in y,

the well-posedness is obtained without difficulty for Rn-valued BSDEs. But when f is

quadratic in z, little is known for multidimensional BSDEs. A result in Tevzadze [77]

guarantees that if f is purely quadratic in z (no first-order terms) and if the terminal

condition is bounded and small enough, then there exists a solution. However, Frei

and dos Reis [34] show some counter-examples of BSDEs for which there can be no

solutions. See also Frei [33] and Delbaen and Tang [27].

1.1.2 BSDEs and PDEs.

The application of (F)BSDEs to PDEs is the guiding theme of this thesis. Each

chapter contains a short presentation of the specific question it treats in this respect,

where needed. However, we would like to recall here the general idea, which will be

put to intensive use in Chapter 1 but pervades the whole thesis.

1We use the notation
〈
x
∣∣y〉 for the scarlar product of two elements x, y,∈ Rn, and the notation

〈x, y〉 for the quadratic covariation of two semimartingales x and y.
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We will be concerned only with the case of parabolic PDEs, vt +
1

2
vxx · a+ vx · b+ f(t, x, v, vx σ) = 0

v(T, ·) = Φ ,
(1.1.4)

for (t, x) ∈ D = ]−∞, T ]×Rd, for a fixed and given time T > 0. In the above equation,

the unknown v function is from D to Rn, the terminal condition Φ : Rd → Rn. The

coefficients are b : [0, T ] × Rd → Rd and a : [0, T ] × Rd → S+
d (R), the set of positive

symmetric d×dmatrices. So vx·b =
∑d

i=1 ∂iv b
i ∈ Rn and vxx·a =

∑d
i,j=1 ∂i,jv a

i,j ∈ Rn.

The matrix a is suposed to be given by a = σσ∗ for some matrix σ (typically the

unique square root of a in S+
d (R), but σ does not have to be symmetric, or even a

square matrix, it could be a m× d matrix of rank d, for m ≥ d).

This PDE is formally equivalent to the system of FBSDE

dXs,x
t = b(t,Xs,x

t )dt+ σ(t,Xs,x
t )dWt with Xs,x

s = x (1.1.5)

dY s,x
t = −f(t,Xs,x

t , Y s,x
t , Zs,x

t )dt+ ZtdWt with Y s,x
T = Φ(Xs,x

T ). (1.1.6)

where t ∈ [s, T ], and (s, x) ∈ D = ]−∞, T ]× Rd.

The connection is best understood as being what the method of characteristics

gives for 2nd order, parabolic PDEs. To see this, fix (s, x) ∈ D and let us look at how

to determine v(s, x). Consider the path (X
s,x

t )t∈[s,T ] given by X
s,x

t = (t,Xs,x
t ), where

Xs,x
s = x and dXs,x

t is given by the SDE (1.1.5). We look at the value Y s,x
t = v(X

s,x

t ) =

v(t,Xs,x
t ) along the path X

s,x
. If v is of class C1,2, applying Itô’s formula, we see that

if we set Zs,x
t = (vxσ)(t,Xs,x

t ), then (Y s,x
t , Zs,x

t )t∈[s,T ] is a solution to the BSDE (1.1.6)

with terminal condition Y s,x
T = Φ(Xs,x

T ).

In the particular case where f = 0, we know that v(s, x) = Y s,x
s = E

[
Φ(Xs,x

T )
]
; this

is the well-known Feynman–Kac formula. In the general case, the relation v(s, x) =

Y s,x
s representing the PDE solution in terms of the FBSDE solution is called a nonlinear

Feynman–Kac formula.

However, the interesting direction to establish is the converse of the one presented

above. Starting from the solution to the BSDE, and setting v(s, x) := Y s,x
s , one can

show under reasonable assumptions that v so defined is a solution in some sense to

the PDE (1.1.4).

7



The link between PDEs and FBSDEs first appeared in Peng [69], who proved that

the classical solution to a PDE induces a solution to the corresponding BSDE (as shown

above). In Pardoux and Peng [66] it was shown that if f and Φ are regular enough

(of class C3), then v defined by v(s, x) := Y s,x
s is a classical solution to (1.1.4). It was

proved in Peng [70] and Pardoux and Peng [66] that under the standard assumptions

that f is Lipschitz and Φ as well, v(s, x) := Y s,x
s defines a viscosity solution to the

PDE. See Chapter 1 for more references on this topic.

Although each chapter contains its own introduction, we now give a very brief pre-

sentation of each of them, with an overview of the results they contain.

1.2 A representation formula between a class of

multidimensional quadratic PDEs and the as-

sociated BSDEs, and applications.

In Chapter 2, we are concerned with the connection between PDEs and BSDEs

in the case where the PDE is multidimensional, with a quadratic nonlinearity f of a

special form.

Problem studied and motivation.

While it is always possible to connect formally a given PDE problem to its equiv-

alent forward-backward stochastic problem, there is then the task of establishing this

connection rigorously. In some cases, the difficulty comes from the nature of the prob-

lem studied, and the fact that the probabilistic counterpart has not yet been under-

stood (for instance when reflected BSDEs were introduced, and were shown to be the

counterpart of obstacle problems for PDEs). In some cases, the nature of the problem

is known and understood, but the connection has not yet been established under the

particular set of assumptions under consideration (for instance, when the connection

was shown between PDEs and BSDEs for nonlinearities f which can be quadratic in

z, and a bounded terminal condition : it was formally the well known parabolic PDE

case, but the connection was previously proved only for Lipschiz f).
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Once the connection between a certain PDE problem and its probabilistic forward-

backward stochastic problem is proved, under a given set of assumptions on f and

Φ (and b and σ), the situation is often not pushed further. A notable exception to

this is when obtaining further representation theorems, which deepen the connection

and leads to path-regularity theorems that are needed for analyzing the convergence

of numerical methods for BSDEs (which is discussed in Chapter 4).

We are interested in establishing some sort of connection between a PDE prob-

lem and its BSDE equivalent, the difficullty in our case coming from the analytical

assumptions. We would also like to use this connection in new ways, to derive PDE

estimates using probabilitic techniques.

More precisely, we study multidimensional PDEs of the form vt +
1

2
∆v + vx f(t, v, vx) + g(t, v, vx) = 0

v(T, ·) = Φ ,

for Lipschitz function f and g. In the above, (t, x) ∈ [0, T ]×Rd, v is Rn valued, and f

is Rd-valued. The term vx f(t, v, vx) is quadratic in vx. Fixing (0, x) ∈ [0, T ]×Rd, the

equivalent FBSDE is

Xs = x

dXt = dWt

dYt = −
[
Ztf(t, Yt, Zt) + g(t, Yt, Zt)

]
dt+ ZtdWt

YT = Φ(XT ).

Known results.

An abundant literature has been devoted to the links between PDEs and BSDEs,

of which we mention only a few landmarks.

As mentionned above, the link between PDEs and BSDEs was worked out first by

Peng [69, 70] and Pardoux and Peng [66]. They studied mainly the case of parabolic

PDEs with Lipschitz functions f and Φ. It was shown how a classical solution to the

PDE induces a solution to the BSDE. It was also shown that under extra regularity

assumptions, the solution to a FBSDE induces a classical solution to the PDE, and

that under only the Lipschitz assumption it induces a viscosity solution to the PDE.
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We also note that Barles and Lesigne [3] studied the connection with PDE solutions

in the sense of distributions.

Then, different problems were studied. For instance, Pardoux and Peng considered

stochastic PDEs and their associated backward doubly stochastic differential equa-

tions [67]. Hu [39] and Pardoux and Zhang [68] considered problems with Neumann

boundary conditions. Obstacle problems for PDEs were connected with BSDEs re-

flected on one obstacle (El Karoui, Kapoudjian, Pardoux, Peng and Quenez [30]) or

two obstacles (Cvitanic and Karatzas [24]). The connection was also established un-

der more general assumptions. Kobylanski [50] proved it for quadratic nonlinearities

and bounded terminal conditions, while Briand and Hu [14] proved it for unbounded

terminal conditions.

As far as multidimensional quadratic BSDEs are concerned, few positive results are

known. A result in Tevzadze [77] ensures that if the nonlinearity is purely quadratic

and the terminal condition small enough, there exists a solution. However examples

from Frei and dos Reis [34] show that some simple such BSDEs can have no solution

at all.

Results obtained.

Multidimensional quadratic BSDEs are little understood. In our case however, we

can take advantage of the special structure of the nonlinearity. Using a change of

measure, we can “sweep out” the quadratic term and be led to the Lipschitz BSDE dYt = −
[
g(t, Yt, Zt)

]
dt+ ZtdBt

YT = Φ(XT ),

where B is again a Brownian motion. We can consider the change of measure for the

whole FBSDE system, which leads to the now-coupled equation

Xs = x

dXt = f(t, Yt, Zt)dt+ dBt

dYt = −
[
g(t, Yt, Zt)

]
dt+ ZtdBt

YT = Φ(XT ).
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The advantage of the measure-changed equation is that is it now Lipschitz, and there-

fore more amenable to computations and estimates. However, the change of measure in

the direction we performed it above depends on the solution of the BSDE of interest.

In Chapter 2, we need to perform it in the other direction, which requires a fixed point

problem to be solved first. Consequently, we establish the validity of the representation

of v in terms of the solution to a Lipschitz BSDE (instead of the natural, quadratic

one).

We then use this representation to establish the PDE estimate∫ t

0

Ps
∣∣∇ui∣∣p (s, x) ds ≤ cepcT

(
‖Φ‖p + |g(0, 0)|pT p

)
exp

[ p

2(2− p)
t sup
|y|≤K
|f(y)|2

]
for any i ∈ {1 . . . n}, p ∈ [1, 2[, and where (Pt)t≥0 is the heat semigroup and K is a

constant made explicit in Chapter 2. For further use of BSDEs to study PDEs, we also

mention the papers Hu and Qian [41], Hu, Qian and Zhang [42].

1.3 Well-posedness for reflected BSDEs driven by

a continuous martingale.

In Chapter 3, we are concerned with the well-posedness of reflected BSDEs formu-

lated in a very general in setting.

Problem studied and motivation.

“Reflected” BSDEs are, in fact, BSDEs subject to a constraint : the solution process

Y is required to remain above a lower obtacle L. In order to achieve this, it is necessary

to add to the usual dynamics dYs = −fsds+ZsdWs a “force” dK that drives Y upward.

One wants that extra term to be minimal, so that K is only active to prevent Y

from passing below the obstacle L. This optimality condition (known as the Skorohod

condition) is often expressed as
∫ T

0
1{Ys>Ls}dKs = 0. So a reflected BSDE takes the
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following form :

dYs = −f(s, Ys, Zs)ds− dKs + ZsdWs,

YT = ξ,

Yt ≥ Lt for all t ∈ [0, T ],

K is continuous, increasing, starts from 0 and

∫ T

0

1{Ys>Ls}dKs = 0,

(1.3.1)

where the solution to be determined is now the triple (Y, Z,K).

In the context of PDEs, reflected BSDEs are the probabilistic counterpart to ob-

stacle PDE problems (variational inequalities). That is, instead of the PDE (1.1.4),

we now want v, essentially, to satisfy the PDE so long as v is strictly greater than an

obstacle l and to always remain above that obstacle. More precisely, we want

max

{
vt +

1

2
vxx · a+ vx · b+ f(t, x, v, vx σ) , l − v

}
= 0.

The backward stochastic problems associated with PDE problems, whether with

initial condition (defined on the whole Rd), with Dirichlet boundary condition or with

Neumann boundary conditions, can all be studied with the same formalism if one

considers a sufficiently general formulation of backward stochastic problems. To cover

these cases, we need to allow that the terminal time T may be a stopping time and

that the drift may be of the form f(t, Yt, Zt)dt + g(t, Yt)dAt where A is an increasing

process. We will, in fact, cover an even greater generality and study the well-posedness

of the reflected BSDE 

dYt = −dV (Y,N)t − dKt + dNt

YT = ξ

Y ≥ L

1{Yt>Lt}dKt = 0 ,

with drift given by

dV (Y,N)t = f(t, Yt, Ztσt)dCt + d
〈
ν,N⊥

〉
+ gsd

〈
N⊥
〉
t
,
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and where the martingale part N of Y has the decomposition dNt = ZtdMt + dN⊥ on

the reference martingale M , with N⊥ orthogonal to M (in the sense that
〈
M,N⊥

〉
).

In this setting, C is a given increasing process and f, ν, g are the coefficients of the

driver dV (Y,N)t.

Known results.

Reflected BSDEs were introduced by El Karoui, Kapoudjian, Pardoux, Peng and

Quenez in [30], where the well-posedness was studied under the assumptions that

f is Lipschitz, the terminal condition is square-integrable and the lower obstacle a

continuous square-integrable semimartingale. As far as the analytical assumptions on

(f, ξ) are concerned, this corresponds naturally to the setting considered initially in

Pardoux and Peng [65] or in El Karoui, Peng and Quenez [31].

As already mentioned, the well-posedness for BSDEs has been extended to a num-

ber of other cases.

Kobylanski obtained in [50] the well-posedness of BSDEs when f is quadratic in

z, Lipschitz in y, and ξ is bounded. Lepeltier and San Martin [55] relaxed the second

assumption and allowed f to have slightly superlinear growth in y. Using essentially

the same techniques, Kobylanski, Lepeltier, Quenez and Torrès [51] were then able to

prove the analogue results for RBSDEs when the obstacle L is bounded.

Reflected BSDEs when ξ is bounded, f quadratic in z but monotone with arbitrary

growth in y were studied by Xu [79], after Briand, Lepeltier and San Martin [15]

obtained the well-posedness for BSDEs under these assumptions.

Under the assumptions that f is quadratic in z and Lipschitz in y, Lepeltier and

Xu [56] treated the case of reflected BSDEs with unbounded terminal condition ξ

and bounded obstacle L, while Bayraktar and Yao [5] removed the condition that L

be bounded. These results are based on the progress made on quadratic BSDEs with

unbounded terminal conditions by Briand and Hu [13, 14] and Delbaen, Hu and Richou

[25] (on which more progress was done afterwards, see Delbaen, Hu and Richou [26]

and Barrieu and El Karoui [4]).

However, as already mentioned, the case of quadratic BSDEs with bounded ter-

minal conditions was recently considerably simplified. Tevzadze [77] and Briand and

Elie [12] gave simpler approaches, and these ideas have so far not been tested against

reflected BSDEs (but for our study in Chapter 3, using the technique from [77]).
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The above-mentioned works [30], [51], [79], [56] and [5] dealt with reflected BSDEs

in a Brownian setting. However, BSDEs have been studied in a general martingale

setting (see El Karoui and Huang [29], Tevzadze [77], Morlais [62], Barrieu and El

Karoui [4]), and in a general filtered probability space in Cohen and Elliott [20].

Regarding the stability of the solution with respect to changes in the terminal

condition, global Lipschitz estimates for the martingale part in Hp were obtained in

Briand, Delyon, Hu, Pardoux and Stoica [11], Briand and Confortola [9] and Ankirch-

ner, Imkeller and Dos Reis [2]. Kazi-Tani, Possamai and Zhou [48] provide a global
1
2
-Hölder estimate in the smaller space BMO, for quadratic BSDEs with bounded

terminal conditions (and with jumps, but obviously their result and technique would

hold without the jumps).

Results obtained.

We obtain the well-posedness results for reflected BSDEs driven by a continuous

martingale, as written above, under the assumptions that the terminal condition ξ is

bounded and that f is quadratic in z, while the dependence in y can be Lipschitz,

slightly superlinear, or monotone with arbitrary growth. This extends the results ob-

tained in a Brownian setting in [51] (slightly superlinear growth in y) and [79] (mono-

tonicity and arbitrary growth in y), under the same assumptions on the z dependence

and ξ.

While it would be possible to generalize to the continuous martingale setting some

of the results known for reflected BSDEs in a Brownian setting by using the same

techniques which were used to prove them in the first place, we generally use different

ones, with the double aim of providing a treatment as self-contained as possible (not

relying on BSDE results for instance) and of providing more morally satisfying proofs.

First, we obtain the comparison theorem in our setting (from which uniqueness

follows). To prove it, we adapt to reflected BSDEs (whether set in a Brownian setting

or not) the linearization and BMO argument from Hu, Imkeller and Müller [40], rather

than relying on an optimal stopping representation and invoking the comparison theo-

rem for BSDEs, as was done in [51]. Prior to doing this, we show, for reflected BSDEs,

that for a bounded solution, the martingale part is in BMO (which had not been used

even for Brownian reflected BSDEs). In doing so, we also obtain a BMO-style estimate

for the increasing process K.
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We obtain the special comparison theorem for reflected BSDE, which allows to

compare the increasing processes of two solutions. In a Brownian setting this theo-

rem was proved in various cases in [37], [71], [54], [51], via the penalization approach

to BSDEs, using the comparison theorem for BSDEs and identifying the quantitites

which, at the limit, become the increasing processes. We provide a different proof,

more intrinsic, and which works under minimal assumptions.

For the existence result, we adapt to the context of reflected BSDEs the technique

introduced by Tevzadze [77]. There is a difficulty caused by the fact that the underlying

problem for reflected BSDEs is not linear, and as a consequence the sum of solutions

to RBSDEs is in general not the solution to the RBSDE one would want. However,

by reinterpreting the technique from [77] as a pertubation procedure, we are able to

identify the type of equation that perturbations satisfy and conclude to existence.

We also note that the technique, initially used for a Lipschitz dependence in y is

generalizable, and in our context we conclude to existence of a solution when f can

have slightly superlinear growth in y or be monotone with arbitrary growth.

Finally, we obtain a local regularity result for the martingale part in BMO. That

is, given a terminal condition ξ, we show that there exists R > 0 and c(ξ) > 0 such

that, for any other bounded terminal conditions ξ′, ξ′′ at distance less than or equal

to R from ξ, if we denote by S ′ = (Y ′, N ′, K ′) and S ′′ = (Y ′′, N ′′, K ′′) the associated

solutions, we have

‖N ′′ −N ′‖BMO ≤ c(ξ)‖ξ′′ − ξ′‖∞ .

This improves on the 1
2
-Hölder regularity proved in [48], at the expense of holding only

for small perturbations.

1.4 Time-discretization of monotone FBSDEs with

polynomial growth.

In Chapter 4, we are concerned with the time discretization of FBSDEs under

some analytical assumptions relevant for reaction-diffusion PDEs. Indeed, many such

equations have nonlinearities which are typically polynomial in v (that is to say y, in

the probabilistic counterpart).
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Problem studied and motivation.

We have explained how the solution v to the PDE (1.1.4) can be represented as

v(s, x) = Y s,x
s , and more generally for t ∈ [s, T ]

v(s,Xs,x
t ) = Y s,x

t and (vxσ)(s,Xs,x
t ) = Zs,x

t ,

where (Xs,x
t , Y s,x

t , Zs,x
t )t≥s is the solution to the FBSDE (1.1.5)–(1.1.6). This implies

that every numerical method to compute the solution (X, Y, Z) to the FBSDE provides

a probabilistic method to approximate the solution v to the PDE.

Let us look more closely at the FBSDE (1.1.5)–(1.1.6). Since the SDE (1.1.5) for

the forward component X is not coupled with the backward component (Y, Z), known

time-discretization techniques for SDEs are readily available to approximate numer-

ically the process X, with known and proven orders of convergence (see for instance

Kloeden and Platen [49]). Considering a partition πN : 0 = t0 < t1 < . . . < tN = T of

the time interval [0, T ], with N + 1 points and a mesh |πN | going to 0 as N −→ +∞,

one can construct a numerically computable (Xi)i=0...N close to (Xt)t∈[0,T ] in some

relevant sense. More specifically, if

max
i=0,...,N

E
[
|Xti −Xi|p

] 1
p ≤ c|π|γ,

for some γ > 0, we say that there is convergence of order (at least) γ.

The study of numerical methods to compute an approximation of the BSDE solution

(Y, Z) is more recent and the subject of a growing effort. As a first step, one needs

to obtain a time-discretization for the BSDE (1.1.6). For instance, in Chapter 4 we

study the following family of θ-schemes, where the parameter θ ∈ [0, 1] characterizes

the degree of implicitness. Define first YN = Φ(XN) and ZN = 0, and then for i =

N − 1, . . . , 0 define

Yi = E
(
Yi+1 + θf(ti, Xi, Yi, Zi)hi+1 + (1− θ)f(ti+1, Xi+1, Yi+1, Zi+1)hi+1

∣∣∣Fi)
Zi = E

({
Yi+1 + (1− θ)f(ti+1, Xi+1, Yi+1, Zi+1)hi+1

}∆Wi+1

hi+1

∣∣∣∣Fi)
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where hi+1 = ti+1− ti and ∆Wi+1 = Wti+1
−Wti . In the case θ = 0 this corresponds to

the explicit backward Euler scheme and in the case θ = 1 this is the implicit backward

Euler scheme. The first question is whether there is convergence of (Yi, Zi)i=0...N to

(Y, Z)t∈[0,T ] in some sense. More specifically, in chaper 4 we want to obtain the error

estimate

ERRπ(Y, Z) :=
(

max
i=0,...,N

E
[
|Yti − Yi|2

]
+

N−1∑
i=0

E
[
|Z̄ti − Zi|2

]
hi+1

) 1
2 ≤ c|π|γ,

for some γ > 0, where Z̄ti = 1
hi+1

E
( ∫ ti+1

ti
Zudu

∣∣Fi).
When the time-discretization converges, a second step is then to approximate nu-

merically the conditional expectations used to define Yi and Zi, in order to obtain a

fully implementable numerical scheme. However, the error created by the approxima-

tion of the conditional expectations will not be studied in this thesis and we refer the

reader to Gobet and Turkedjiev [35] for these questions.

The study of the convergence of the above discretization to the solution to the

BSDE requires first to obtain a finer theoretical result for (non-approximated) BSDEs

known as path-regularity. This states that the trajectories of Y and Z are somehow

continuous in some Sp ×Hp sense. More precisely, it says that for |π| small enough,

E
[

sup
i

sup
ti≤t≤ti+1

|Yt − Yti |p
]

+ E
[

sup
i

sup
ti≤t≤ti+1

|Yt − Yti+1
|p
]
≤ c|π|

p
2 and

E

[(∑
i

∫ ti+1

ti

|Zt − Zti |2dt
)p]

+ E

[(∑
i

∫ ti+1

ti

|Zt − Zti+1
|2dt
)p]
≤ c|π|

p
2

Known results.

In the case where f and g are Lipchitz, this path-regularity result was obtained

by Zhang [81] for p = 2. Once this was acquired, the road was open to study the

convergence of the time-discretization for Lipschitz BSDEs, and this was done by

Zhang [82] and Bouchard and Touzi [7] for slightly different schemes.

Different time-discretization schemes have then been considered, aiming in par-

ticular at higher order of approximation. For instance, Crisan and Manolarakis [22]

studied a mixed explicit-implicit scheme (similar in spirit to the scheme above with

θ = 1
2
) and showed that it was of order 2. More recently, adapting ODE methods

for the time-discretization, Chassagneux and Crisan [18] introduced for BSDEs the
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family of Runge-Kutta schemes, while Chassagneux [17] introduced linear multi-step

methods, providing further higher order schemes.

A few papers have also studied the numerical approximation of solutions to quadratic

BSDEs with bounded terminal condition. Mainly, the idea was to approximate the

quadratic driver by a Lipschitz one (Imkeller and dos Reis [46]) or to approximate

the bounded terminal condition Φ by a Lipschitz one (Richou [72], see also [73]),

which leads to dealing with a Lipschitz BSDE, for which error estimates for the time-

discretization are already known. More recently, Chassagneux and Richou [19] have

proposed a more straightforward approach.

Results obtained.

We analyse the time-discretization in the case where f is monotone and has poly-

nomial growth in y, as well as Lipschitz dependence in z, and Φ is Lipschitz.

More precisely, we first prove the path-regularity theorem in that setting (together

with the differentiability results needed for it), and we prove this for all p ≥ 2. Having

obtained the path-regularity, we study the convergence of the θ-scheme.

We prove that provided that θ ≥ 1
2

(the implicit component dominates), the scheme

converges. However, we give an example in the case θ = 0 (the fully explicit scheme)

where the approximation given by the scheme explodes. This indicates that we should

expect, in general, that the scheme diverges for θ < 1
2
. This is the first instance in

the literature related to the time-discretization of BSDEs where we observe a different

behaviour for the explicit and implicit scheme. It is indeed a rule of thumb, known for

the time-discretization of ODEs and SDEs, that implicit schemes are more stable.

However, while the explicit scheme is less stable, and tends to diverge in this setting,

it is more easy to implement and computationally faster, seeing as it does not require

the extra layer of computation needed to compute Yi in the implicit scheme. To fix

this explosion issue, we propose a tamed version of the explicit scheme for which we

can recover convergence.

In all these cases, the convergence occurs with order γ = 1
2
. Thanks to the way

we study the convergence (and in particular what we call the Fundamental Lemma,

which allows to separate the ingredients required for convergence), we can easily show
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along the way that in the case θ = 1
2
, the scheme has a higher order of convergence

(γ = 7
4
) under the assumption that f does not depend on z (a minor assumption if

one has in mind the application to reaction-diffusion PDEs with nonlinearities which

are polynomial in v).
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Chapter 2

A representation formula between

a class of multidimensional

quadratic PDEs and the associated

BSDEs, and applications.

2.1 Introduction

2.1.1 Motivation

In this chapter, we are interested in the probabilistic representation of solutions to

the multidimensional PDE
∂ui

∂t
+

1

2
∆ui +

d∑
j=1

uj
∂ui

∂xj
= 0 for all i ∈ {1, . . . , d} and for (t, x) ∈ [0, T [×Rd

u(T, ·) = h .

(2.1.1)

The quadratic nonlinearity F (u,∇u) = ∇u.u = (u ·∇)u is typical of equations like

the Euler equation and the Navier-Stokes equation in fluid dynamics. In fact, (2.1.1)

is the Navier-Stokes equation in which one has dropped the pressure term and the

divergence-free condition, keeping only the nonlinear convection term (u · ∇)u. This

kind of PDEs has been used as simplified models for phenomena such as turbulence
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flows.

Due to the special structure of the system (2.1.1), the maximum principle applies

to |u(x, t)|2, so a bounded solution exists as long as the terminal data h (note that

we orient the time axis in the opposite direction of the diffusion time) is regular and

bounded, which makes a distinctive difference from the Navier-Stokes equations. Ac-

cording to Theorem 7.1 on page 596 in [53], if the initial data h is smooth and bounded

with bounded derivatives, then a bounded, smooth solution u to the initial/terminal

value problem (2.1.1) exists for all time. Our main interest is to establish a convenient

probabilistic representation for the solution u, by applying Girsanov’s transform to

the corresponding BSDEs.

Indeed, we know from Peng [69] that if we are given a Brownian motion B̃, and

consider the processes Y u
t = u(t, x + B̃t) and Zu

t = ∇u(t, x + B̃t), an application of

Itô’s formula shows that (Y u, Zu) solves the BSDE{
dYt = −ZtYtdt+ ZtdB̃t

YT = h(x+ B̃T ) = ξ .

2.1.2 Literature review

However the above equation is a multidimensional quadratic BSDE. While scalar

BSDEs with quadratic nonlinearity are becoming well-understood, whether for bounded

terminal conditions (see Kobylanski [50], Tevzadze [77], Briand and Elie [12] for the

well-posedness results) or for unbounded terminal conditions (see Briand and Hu

[13, 14]), Delbaen, Hu and Richou [25, 26] and Barrieu and El Karoui [4]), very little

is known about multidimensional quadratic BSDEs. A result in Tevzadze [77] guaran-

tees the existence of a bounded solution if the nonlinearity F contains only quadratic

terms and if the terminal data ξ is small enough in L∞ (an assumption that we do

not make here). However, some counter-examples by Frei and dos Reis [34] show that

some simple multidimensional quadratic BSDEs cannot have a solution, even for small

terminal condition. Beyond that, there seem to be essentially no well-posedness results

for these BSDEs.
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2.1.3 Overview of the content of this chapter.

Our eventual goal is to study the PDE solution u through its probabilistic represen-

tation (Y u, Zu), in particular to obtain estimates on u in terms of the heat semigroup.

For this we need to have estimates and a minimum of well-posedness theory for the

corresponding BSDE. But, as explained above, there are no general results for multi-

dimensional quadratic BSDEs.

Thanks to the special structure of the nonlinearity, we are able to swap the above

BSDE for a Lipschitz BSDEs, by means of a change of measure. Consequently, we

obtain a representation for u in terms of the solution (Y, Z) to a Lipschitz BSDE.

These BSDEs are very well understood, even when multidimensional, and therefore

the representation of u in terms of (Y, Z) allows us to carry the desired study of u via

probabilistic techniques.

Our contribution is the following :

• We provide a probabilistic representation for the solution to a multidimensional

PDE with a quadratic nonlinearity of the form of (2.1.1) in terms of the solution

to a Lipschitz BSDE, more amenable to computations

• We show how, in general, such probabilistic representations allow to obtain es-

timates for the PDE solution, in particular in terms of the heat semigroup.

• We obtain an existence result and a partial uniqueness result for the correspond-

ing class of multidimensional quadratic BSDEs.

2.2 Setting, notation and some BSDE results.

2.2.1 Setting and notation.

More generally than (2.1.1), we will study the class of equations
∂ui

∂t
+

1

2
∆ui + gi(u,∇u) +

d∑
j=1

f j(u,∇u)
∂ui

∂xj
= 0

u(T, ·) = h,

(2.2.1)

for i ∈ {1, . . . ,m} and (t, x) ∈ [0, T [×Rd, where the nonlinearity functions f : Rm ×
Rm×d → Rd and g : Rm × Rm×d → Rm, while the terminal condition h : Rd → Rm.
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Here m and d are not necessarily equal.

In the whole chapter, we make the following assumptions on the data h, and (f, g)

of the problem :

• f and g are Lipschitz, with Lipschitz constants Lf and Lg

• h is bounded and Lipschitz (with constant Lh)

Under these conditions, it is known (see for instance theorem 7.1, p596, in Ladyzhen-

skaya et al. [53]) that there exists a unique bounded classical solution u to (2.2.1), and

that ∇u is also bounded.

T > 0 being fixed, we consider the space Ω = C([0, T ],Rd) of continuous paths from

[0, T ] to Rd, equipped with the canonical filtration F = (Ft)t∈[0,T ]. We also consider

a probability measure P and a process B such that (Ω,F ,P, B) is a Brownian setting

(i.e. B is a d-dimensional Brownian motion under P, and F is the augmented filtration

of B).

2.2.2 Recall of some BSDE results.

We will study the solution u to the above PDE by means of BSDEs. We recall

some known results on these equations that we will use in the sequel.

For any random variable ξ ∈ L2(FT ), since g is Lipschitz, we know from Pardoux

and Peng [65] that the BSDE{
dYt = −g(Yt, Zt)dt+ ZtdBt

YT = ξ
(2.2.2)

admits a unique solution (Y, Z) in S2 ×H2. We recall here that

• S2 is the space of continuous, progressively measurable processes Y ’s such that

the norm

‖Y ‖2
S2 = E

[
sup

0≤t≤T
|Yt|2

]
< +∞ ,

• H2 is the space of progressively measurable processes Z’s such that the norm

‖Z‖2
H2 = E

[ ∫ T

0

|Zt|2dt
]
< +∞ .
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When needed, we denote the solution to (2.2.2) by (Y (ξ), Z(ξ)).

We have the following known estimate (see El Karoui et al. [31]). There exists a

constant c > 0 such that, for any random variables ξ, η ∈ L2,

‖Y (ξ)− Y (η)‖2
S2 + ‖Z(ξ)− Z(η)‖2

H2 ≤ cecTE
[
|ξ − η|2

]
(2.2.3)

Finally, let us also introduce some classical spaces of processes that will be used in

the sequel.

• BMO is the space of martingales M such that the norm

‖M‖2
BMO = sup

t∈T

∥∥∥∥E( 〈M〉T − 〈M〉t ∣∣∣∣Ft)∥∥∥∥
∞
< +∞ ,

where T is the set of stopping times t such that 0 ≤ t ≤ T . By extension, we say

that a progressively measurable process Z ∈ H2 is in BMO if M =
∫
ZdB ∈

BMO.

• H∞ is the space of bounded progressively measurable processes Z.

2.3 Representation formula.

We want to obtain a convenient probabilistic representation for the solution u to

the multidimensional PDE (2.2.1).

We consider, for a random variable ξ ∈ L2(Ω,FT ) to be determined later, the solu-

tion (Y (ξ), Z(ξ))t∈[0,T ] to the Lipschitz BSDE (2.2.2). We also define for t ∈ [0, T ] the

process

B̃t = B̃(ξ)t = Bt +

∫ t

0

f(Y (ξ)s, Z(ξ)s)ds .

Theorem 2.3.1. If ξ ∈ L2(Ω,FT ,P) is a solution to the equation

ξ = h(x+ B̃(ξ)T )

then we have the representation

u(t, x+ B̃(ξ)t) = Y (ξ)t

25



and

∇u(t, x+ B̃(ξ)t) = Z(ξ)t

for all t ∈ [0, T ], almost surely.

Proof. Since ξ is a solution of this fixed point equation and h is bounded, ξ is bounded.

Proposition 2.3.3 below ensures that (Y (ξ), Z(ξ)) ∈ S∞ × BMO. Then, since f is

Lipschitz, it has at most linear growth and therefore N(ξ) is a BMO martingale.

Consequently, the exponential E(N(ξ)), where

N(ξ)t = −
∫ t

0

f(Y (ξ)s, Z(ξ)s)dBs ,

is a martingale on [0, T ], so we can define a measure Q by dQ
dP

∣∣
Ft

= E(N(ξ))t. By

Girsanov’s theorem (and Lévy’s theorem), B̃(ξ) is then a Brownian motion under Q.

On the one hand, by construction of B̃(ξ), (Y (ξ), Z(ξ)) is a solution to

dYt = −
[ d∑
j=1

Zj
t f

j(Yt, Zt) + g(t, Yt, Zt)
]
dt+ ZtdB̃t

with terminal condition YT = ξ. On the other hand, defining Y u
t = u(t, x + B̃(ξ)t)

and Zu
t = ∇u(t, x + B̃(ξ)t), it follows from Itô’s formula that (Y u, Zu) solves the

above BSDE with terminal condition Y u
T = h(x + B̃(ξ)T ). Since ξ satisfies ξ = h(x +

B̃(ξ)T ),
(
Y (ξ), Z(ξ)

)
and (Y u, Zu) are solutions to the same BSDE, and because Zu

is bounded, they are equal (see proposition 2.3.2 below), which provides the desired

representation.

The technique used above shows that, for any bounded ξ, we can construct a weak

solution (Y, Z,W,R) to the BSDE

dYt = −
[
g(t, Yt, Zt) +

d∑
j=1

Zj
t f

j(Yt, Zt)
]
dt+ ZtdWt

YT = ξ ,

(2.3.1)

Indeed in the proof we showed that (Y, Z,W,R) := (Y (ξ), Z(ξ), B̃,Q) was such a

solution.

There is no general uniqueness result for such a multidimensional quadratic BSDEs.
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However we can prove the following particular result.

Proposition 2.3.2. If (Y, Z) ∈ S∞×BMO and (Y ′, Z ′) ∈ S∞×H∞ are two solutions

of the BSDE (2.3.1) (with bounded ξ, necessarily), then (Y, Z) = (Y ′, Z ′).

Proof. Define ∆Y = Y ′ − Y and ∆Z = Z ′ − Z. We have ∆YT = 0 and

d∆Yt = −
[
g(Y ′t , Z

′
t)− g(Yt, Zt) + Z ′tf(Y ′t , Z

′
t)− Ztf(Yt, Zt)

]
dt+ ∆ZtdWt

= −
[
g(Y ′t , Z

′
t)− g(Yt, Zt) + Z ′t

(
f(Y ′t , Z

′
t)− f(Yt, Zt)

)
+ ∆Ztf(Yt, Zt)

]
dt

+ ∆ZtdWt .

Now, since (Y, Z) ∈ S∞ ×BMO and since f has at most linear growth,
∫
f(Y, Z)dW

is a BMO martingale so we can define the measure R by dR
dP = E(

∫ ·
0
f(Ys, Zs)dWs)t on

Ft. Then W̃ = W −
∫ ·

0
f(Ys, Zs)ds is a R-Brownian motion, and we have

d∆Yt = −
[
G(∆Yt,∆Zt)

]
dt+ ∆ZtdW̃t,

with

G(∆Yt,∆Zt) = g(Y ′t , Z
′
t)− g(Yt, Zt) + Z ′t

(
f(Y ′t , Z

′
t)− f(Yt, Zt)

)
= g(Yt + ∆Yt, Zt + ∆Zt)− g(Yt, Zt)

+ Z ′t

(
f(Yt + ∆Yt, Zt + ∆Zt)− f(Yt, Zt)

)
.

Since g and f are Lipschitz and Z ′ is bounded, G is Lipschitz, and then uniqueness

for Lipschitz BSDEs guarantees that (∆Y,∆Z) = (0, 0).

The uniqueness result that we proved above applies in our context, in the proof

of theorem 2.3.1. Indeed, we know that u is bounded with bounded derivative, so

(Y u, Zu) is in S∞ ×H∞. Also, since ξ = h(x+ B̃(ξ)T ) with h bounded, ξ is bounded

and the estimate below ensures that the solution (Y (ξ), Z(ξ)) to the Lipschitz BSDE

(2.2.2) is in S∞ ×BMO.

Proposition 2.3.3. For any ξ ∈ L∞, for any g : Rm × Rm×d → Rm Lipschitz, and

any (Y, Z) ∈ S2 ×H2 solving the BSDE (2.2.2), we have,

‖Y ‖2
S∞ + ‖Z‖2

BMO ≤ cecT
[
‖ξ‖2

∞ + |g(0, 0)|2T
]
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where c is a constant > 0 depending only on the Lipschitz constant of g.

Proof. Standard computations, using Itô’s formula for |Yt|2, lead to

|Yt|2 +
(

1− 1

ν

)∫ T

t

|Zs|2ds

≤ |ξ|+
∫ T

t

|g(0, 0)|2ds+

∫ T

t

(1 + 2Lg + νL2
g)|Ys|2ds−

∫ T

t

2Ysg(Ys, Zs)dWs,

for any ν > 1. Denoting by b = 1 + 2Lg + νL2
g, m(t) =

∫ T
t

2Ysg(Ys, Zs)dWs and

A(t) = |ξ|+
∫ T
t
|g(0, 0)|2ds, Gronwall’s lemma implies that

|Yt|2 +
(

1− 1

ν

)∫ T

t

|Zs|2ds ≤ A(t)−m(t) +

∫ T

t

eb(u−t)b
(
A(u)−m(u))du .

Taking E
(
· |Ft

)
, noting that E

(
m(u)|Ft

)
= 0 for u ≥ t (because

∫ ·
0

2Ysg(Ys, Zs)dWs

is a martingale, since Y ∈ S2, Z ∈ H2 and g has at most linear growth), we finally

obtain, for ν = 2,

|Yt|2 +
1

2
E

(∫ T

t

|Zs|2ds
∣∣∣∣Ft) ≤ eb(T−t)

(
‖ξ‖2

∞ + |g(0, 0)|2 T
)
.

So the conclusion follows with c = max(1 + 2Lg + 2L2
g, 3).

By Theorem 2.3.1, in order to provide a convenient probabilistic representation for

(2.2.1), the problem is reduced to solving the functional equation

ξ = h

(
x+BT −

∫ T

0

f(Y (ξ)s, Z(ξ)s)ds

)
:= φ(ξ). (2.3.2)

Proposition 2.3.4. There exists a (unique) ξ ∈ L2(FT ) satisfying (2.3.2)

Proof. The proof is carried in two steps. In the first one, we solve the problem when T

is small. In the second one, we split the time interval into small intervals and “patch”

the solutions.

Step 1. In this step, we show that there exists a solution if T is sufficiently small

that

2c ecT T (T + 1)LhLf < 1 ;
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The constant c is that from estimate (2.2.3), and only depends on the problem param-

eter g (not on ξ). For ξ and η in L2(Ω,FT ,P),

|φ(ξ)− φ(η)|

≤
∣∣∣∣h(x+BT −

∫ T

0

f(Y (ξ)s, Z(ξ)s)ds

)
− h

(
x+BT −

∫ T

0

f(Y (η)s, Z(η)s)ds

)∣∣∣∣
≤ Lh

∫ T

0

|f(Y (ξ)s, Z(ξ)s)− f(Y (η)s, Z(η)s)|ds

≤ LhLf

∫ T

0

|Y (ξ)s − Y (η)s|+ |Z(ξ)s − Z(η)s|ds

and therefore

E
[
|φ(ξ)− φ(η)|2

]
≤ L2

hL
2
fE

[(∫ T

0

|Y (ξ)s − Y (η)s|+ |Z(ξ)s − Z(η)s|ds
)2
]

≤ 2L2
hL

2
fTE

[∫ T

0

|Y (ξ)s − Y (η)s|2 + |Z(ξ)s − Z(η)s|2ds
]
.

Using the estimate (2.2.3) we have

E
[
|φ(ξ)− φ(η)|2

]
≤ 2L2

hL
2
fTE

[
T sup

0≤s≤T
|Y (ξ)s − Y (η)s|2 +

∫ T

0

|Z(ξ)s − Z(η)s|2ds
]

≤ 2cecTL2
hL

2
fT (T + 1)E[|ξ − η|2]

and the claim follows from a simple application of the fixed point theorem.

Step 2. T is now arbitrary. Since it is known that u has bounded derivative, let Lu

be a common Lipschitz constant for all the u(t, ·), t ∈ [0, T ]. For N sufficiently big,

τ := T/N satisfies

2c ecτ τ(τ + 1)LuLf < 1 .

We split the time interval [0, T ] into time intervals [iτ, (i+ 1)τ ] for i = 0 . . . N − 1.

We first work on the time interval [0, τ ] (corresponding to i = 0). By what was

done in Step 1, but now with u(τ, ·) in place of h, it is possible to find ξ = ξ0 in

L2(Fτ ) solving the fixed point equation ξ0 = u(τ, x + B̃(ξ0)τ ), where B̃(ξ0)t = Bt −
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∫ t
0
f(Ys(ξ

0), Zs(ξ
0))ds for t ∈ [0, τ ]. We therefore have for t ∈ [0, τ ] the representation

u(t, x+ B̃(ξ0)t) = Y (ξ0)t

∇u(t, x+ B̃(ξ0)t) = Z(ξ0)t .

We then move on to the interval [τ, 2τ ] (corresponding to i = 1). Again, repeating

Step 1, but now with the function u(2τ, ·) instead of h, and x replaced by x+ B̃(ξ0)τ ,

we find ξ = ξ1 in L2(F2τ ) such that ξ1 = u(2τ, x+ B̃(ξ1)2τ ), where B̃(ξ1)t = B̃(ξ0)τ +

(Bt−Bτ )−
∫ t
τ
f(Ys(ξ

1), Zs(ξ
1))ds, for t ∈ [τ, 2τ ]. We therefore have the representation,

for [τ, 2τ ],

u(t, x+ B̃(ξ1)t) = Y (ξ1)t

∇u(t, x+ B̃(ξ1)t) = Z(ξ1)t .

And we go on until the N th step, for i = N − 1, where we are on the time interal

[T − τ, T ]. We obtain the existence of a random variable ξN−1 in L2(FT ) such that

ξN−1 = u(0, x + B̃(ξN−1)T ) = h(x + B̃(ξN−1)T ), where B̃(ξN−1)t = B̃(ξN−2)(N−1)τ +

(Bt −B(N−1)τ )−
∫ t

(N−1)τ
f(Ys(ξ

N−1), Zs(ξ
N−1))ds for t ∈ [(N − 1)τ, T ]. And this gives

the representation, for t ∈ [(N − 1)τ, T ],

u(t, x+ B̃(ξN−1)t) = Y (ξN−1)t

∇u(t, x+ B̃(ξN−1)t) = Z(ξN−1)t .

Now, by construction, the process B̃(ξN−1) = B̃, defined on [0, T ] by B̃t = B̃(ξi)t

if t ∈ [iτ, (i + 1)τ ], is a Brownian motion. Considering now the BSDE solution

(Y (ξN−1), Z(ξN−1)) on [0, T ] (not just [T−τ, T ]), uniqueness for Lipschitz BSDEs guar-

antees that it cöıncides with (Y (ξi), Z(ξi)) on [iτ, (i+ 1)τ ]. Consequently, B̃(ξN−1)t =

Bt −
∫ t

0
f(Y (ξN−1)s, Z(ξN−1)s)ds and ξN−1 is the sought random variable.

2.4 Application to the obtention of a PDE esti-

mate.

In this section use the representation given by theorem 2.3.1 to establish some

explicit gradient estimates for the solution of (2.2.1). We use the same notation as
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in the previous section, but we now particularize to the case where f(y, z) = f(y),

that is to say, f only depends on y. We denote by (Pt) the heat semigroup, defined by

Ptv(x) = ER[v(W x
t )], for any measure R and any R-Browian motion W x (starting at

x).

Proposition 2.4.1. For any p ∈ [1, 2), for any t ≤ T , and i = 1, · · · ,m,∫ t

0

Ps
∣∣∇ui∣∣p (x, T − s) ds ≤ cepcT

(
‖h‖p∞ + ‖g(0, 0)‖p

)
exp

[ p

2(2− p)
t sup
|y|≤K
|f(y)|2

]
,

where c is an explicitly computable constant and K = cecT [‖h‖2
∞ + |g(0, 0)|2T ] is the

constant apprearing in proposition 2.3.3.

Proof. Using the fact that B̃(ξ) is a Brownian motion under Q, the Hölder inequality,

the definition of Rs = dQ
dP on Fs and the Hölder inequality again, we have∫ t

0

Ps
(∣∣∇ui∣∣p (T − s, ·)

)
(x)ds

=

∫ t

0

EQ
[∣∣∇ui∣∣p (T − s, x+ B̃(ξ)s)

]
ds

=

∫ t

0

EQ

[
1

R
p
2
s

∣∣∇ui∣∣p (T − s, x+ B̃(ξ)s) R
p
2
s

]
ds

≤
∫ t

0

EQ
[

1

Rs

∣∣∇ui∣∣2 (T − s, x+ B̃(ξ)s)

] p
2

EQ
[
R

p
2−p
s

]1− p
2

ds

=

∫ t

0

EP
[∣∣∇ui∣∣2 (T − s, x+ B̃(ξ)s)

] p
2
EQ

[
R

p
2−p
s

]1− p
2

ds

≤
(∫ t

0

EP
[∣∣∇ui∣∣2 (T − s, x+ B̃(ξ)s)

]
ds

) p
2
(∫ t

0

EQ
[
R

p
2−p
s

]
ds

)1− p
2

=

(
EP
[∫ t

0

|Z(ξ)is|2ds
]) p

2
(∫ t

0

EQ
[
R

p
2−p
s

]
ds

)1− p
2

=
(
EP [〈Y (ξ)i〉t

]) p
2

(∫ t

0

EQ
[
R

p
2−p
s

]
ds

)1− p
2

and the following two lemmas allow to conclude.

Lemma 2.4.2. For any p ∈ [1, 2),

EQ
[
R

p
2−p
s

]
= EP

[
R

2
2−p
s

]
≤ exp

{
p

(2− p)2
s max
|y|≤K

|f(y)|2
}
.
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where K = cecT [‖h‖2
∞ + |g(0, 0)|2T ] is the constant apprearing in proposition 2.3.3.

Proof. The first equality results from the definition of Q and the fact that Rs is Fs-
measurable. Then,

R
2

2−p
s = exp

{
− 2

2− p
1

2

∫ s

0

|f(Yr)|2dr +

∫ s

0

2

2− p
f(Yr)dBr

}
= exp

{
p

(2− p)2

∫ s

0

|f(Yr)|2dr
}

exp

{
− 1

2

∫ s

0

4

(2− p)2
|f(Yr)|2dr +

∫ s

0

2

2− p
f(Yr)dBr

}
≤ exp

{
p

(2− p)2
s max
|y|≤K

|f(y)|2
}
Ms ,

where we used Proposition 2.3.3, and

Ms = exp

{
− 1

2

∫ s

0

4

(2− p)2
|f(Yr)|2dr +

∫ s

0

2

2− p
f(Yr)dBr

}
is a P-martingale. Taking the expectation gives the result.

Lemma 2.4.3. For some constant c,

EP[〈Y (ξ)i〉t
] p

2 ≤ cecT
(
‖h‖p∞ + |g(0, 0)|p

)
Proof. This is a direct consequence of the fact that

EP[〈Y (ξ)i〉t
] p

2 = EP
[∫ t

0

|Zs|2ds
] p

2

≤ EP
[∫ T

0

|Zs|2ds
] p

2

.

Indeed, the quantity EP
[∫ T

0
|Zs|2ds

]
is bounded above by the BMO norm of Z. So, by

the estimate of proposition 2.3.3, we have

EP
[∫ T

0

|Zs|2ds
] p

2

≤
(
cecT

(
‖h‖2

∞ + |g(0, 0)|2T
)) p2 ≤ cepcT

(
‖h‖p∞ + |g(0, 0)|pT

p
2

)
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Chapter 3

Well-posedness of general quadratic

reflected BSDEs driven by a

continuous martingale.

3.1 Introduction.

3.1.1 Motivation.

The BSDEs associated with several types of PDE problems can all be studied under

the same formalism.

Consider the parabolic PDE with Neumann boundary conditions

vt +
1

2
vxx · a+ vx · b+ f(t, x, v, vx σ) = 0 for (t, x) ∈ [0, T [×D ,

∂v

∂n
= g for all (t, x) ∈ [0, T [×∂D ,

v(T, ·) = ϕ for all x ∈ D ,

where D is a domain in Rd with a smooth boundary ∂D, and n is the inward pointing

(usually) normal vector on the boundary. The BSDEs associated with such PDEs are

the so-called “generalized BSDEs”, introduced by Hu in [39] and Pardoux and Zhang

in [68]. More precisely, when doing the connection between these PDEs and BSDEs, we

consider a forward dynamics given by dXt = b(Xt)dt+n(Xt)dAt +σ(Xt)dWt, A being

the local time of the reflected diffusion X on the boundary ∂D of the domain. The
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corresponding BSDE then has the dynamics dYt = −f(Yt, Zt)dt− g(Yt)dAt + ZtdWt,

and terminal condition YT = ϕ(XT ). We know from El Karoui and Huang [29] that

one can enhance the current increasing process (dt) by setting dCt = dt + dAt, and

find h such that f(Yt, Zt)dt + g(Yt)dAt = h(Yt, Zt)dCt. This leads to consider BSDEs

driven by a general increasing process dYt = −f(Yt, Zt)dCt + ZtdWt.

If instead of a Neumann boundary condition we consider a Dirichlet boundary

condition,

vt +
1

2
vxx · a+ vx · b+ f(t, x, v, vx σ) = 0 for (t, x) ∈ [0, T [×D ,

v = ψ for all (t, x) ∈ [0, T [×∂D ,

v(T, ·) = ϕ for all x ∈ D ,

then the diffusion dXt = b(Xt)dt + σ(Xt)dWt should be stopped when either the

process X touches the boundary (in which case we know the value to be ψ(Xτ )) or t

reaches T (in which case we know the value to be ϕ(Xτ )), where τ = inf{t ∈ [0, T ] :

Xt ∈ ∂D} ∧ T . This means we are considering the BSDE with a standard dynamics

dYt = −f(Yt, Zt)dt + ZtdWt up to the stopping time τ , with terminal condition Yτ =

Φ(Xτ ), where

Φ(x) =

{
ϕ(x) if x ∈ D

ψ(x) if x ∈ ∂D,

the first case being for when X did not touch ∂D before T and the terminal value

is given by the terminal condition ϕ of the PDE, the second case being for when

X touched ∂D before T and the terminal value is given by the Dirichlet boundary

condition ψ. Naturally, for the PDE problem to be a minimum consistent, the boundary

condition ψ on ∂D and the terminal condition on D are so that for all x ∈ ∂D,

ψ(x) = ϕ(x).

There is no difficulty, at least formally, in considering at once the general BSDE{
dYt = −f(Yt, Zt)dCt + ZtdWt

Yτ = Φ(Xτ ),

with both a (possibly) random terminal time τ and a (possibly non dt) increasing

process C. Such a general BSDE covers at once the BSDEs associated to parabolic
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PDEs set on the whole space Rd, or set on a domain D ⊆ Rd, whether with Dirichet

or Neumann boundary condition. In PDEs, it is possible to recast these 3 types of

parabolic problems in terms of operator. One essentially imbeds in the operator the

behaviour at the boundary, so that formally it is always the same problem, but with

a general operator. What we showed above is the equivalent for BSDEs.

One can consider an even greater generality of BSDEs. In many situations in math-

ematical finance, in the cases of incomplete markets, the randomness is not coming

only from the d-dimensional Brownian motion W . Typically, it could be coming from

a higher-dimensional Brownian motion but one can only control the exposure to a cer-

tain number of components since there are only a certain number of tradable assets.

In such a case, W would not have the martingale representation property. This leads

to consider a BSDE where the reference martingale is not necessarily W , but say a

general martingale M which might not have the representation property. So that the

martingale part N of the solution Y would have the decomposition N =
∫
ZdM +N⊥

on M , with N⊥ the component of N orthogonal to M (in the sense that
〈
M,N⊥

〉
= 0).

This orthogonal complement N⊥ is interpreted as the tracking error and used in the

context of Föllmer-Schweizer strategies in mathematical finance.

Since the martingale part is N =
∫
ZdM+N⊥, one could consider a drift depending

on N not only through Z (that is, the component
∫
ZdM absolutely continuous with

respect to M) but also through N⊥. We will consider such a dependence, of the form

d
〈
ν,N⊥

〉
+ gsd

〈
N⊥
〉
, where ν is a martingale orthogonal to M , characterizing the

linear term in N⊥, and g is a process, characterizing the quadratic term in N⊥.

Combining all the generality that we have motivated above, we are naturally led to

consider the general backward stochastic equation{
dYt = dV (Y,N)t + dNt

Yτ = ξ,

where the drift is given by

dV (Y,N)t = f(Yt, Zt)dCt + d
〈
ν,N⊥

〉
t
+ gtd

〈
N⊥
〉
t
.
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We would like to study backward stochastic problems formulated in such a generality

when the drift V has a quadratic dependence on the martingale part N of the solution.

However, unlike in the previous chapter, we will remain in dimension n = 1. BSDEs

in the strict sense (standard BSDEs) have already been studied with a certain level of

generality (considering the generality only from a formal point of view for the moment,

not looking at the analytical assumptions). For instance, El Karoui and Huang [29]

studied BSDEs driven by a martingale when the drift is Lipschitz, Morlais [62] and

Tevzadze [77] considered general BSDEs with a quadratic drift and a bounded terminal

condition, while Cohen and Elliott [20] looked at BSDEs over a general filtration.

In this chapter, we will look at reflected BSDEs with the same generality as de-

scribed above, under the assumption that the drift is at most quadratic in the martin-

gale part and that the terminal condition is bounded. More precisely, we will study the

theory (mainly the well-posedness questions) for those reflected BSDEs. On the way,

we will obtain a new and more intrinsic proof of the special comparison theorem for

reflected BSDEs (see below). We will also obtain a local Lipschitz estimate for N in

the space BMO, the technique for which applies naturally to (standard) BSDEs in the

Brownian case as well, and provide an improvement on previously known regularity.

3.1.2 Introduction to reflected BSDEs

Before moving on to presenting the research work that constitutes the main matter

of this chapter, let us do first a brief presentation of reflected BSDEs, since this is what

we will be concerned with in this chapter and it has not been presented in chapter 1.

Reflected BSDEs.

Given the name (reflected BSDEs) and the motivations for studying these equations

(for us in this chapter, but also in general in the BSDE literature), it is natural to use

BSDEs as a starting point.

A reflected BSDE is essentially a BSDEs, with terminal condition ξ and dynamics

dYt = −f(Yt, Zt)dt + ZtdWt, but we now want Y to remain above a lower barrier L

: Yt ≥ Lt. Naturally, if we want this constraint to be satisfied, we need to allow the

solution Y not to follow strictly the BSDE dynamics (characterized by f), and to have

the possibility to drift upward. For this, we add a term dKt ≥ 0 in the dynamics :

dYt = −f(Yt, Zt)dt − dKt + ZtdWt. This term is required to be minimal so that it
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only prevents Y from passing under L. The condition expressing that is the Skorohod

optimality condition 1Yt>LtdKt = 0. So in the end, solving a reflected BSDE consists

in finding (Y, Z,K) such that

dYt = −f(Yt, Zt)dt− dKt + ZtdWt

YT = ξ

Yt ≥ Lt for all t < T

1Yt>LtdKt = 0 ,

where K is sought as a increasing process (dKt ≥ 0), continous, starting from 0

(K0 = 0) and progressively measurable. It can of course be rewritten in integral form,

for both the dynamics and the Skorohod condition :

Yt = ξ +

∫ T

t

f(Yu, Zu)du+ (KT −Kt)−
∫ T

t

ZudWu

Yt ≥ Lt for all t < T∫ T

0

1Yt>LtdKt = 0.

One sometimes finds the Skorohod minimality condition expressed as
∫ T

0
(Yt−Lt)dKt =

0 which is obviously entirely equivalent.

Note that we do the identification between a continous increasing path on [0, T ]

starting from 0 (an accumulator) and a positive measure dK on [0, T ].

Skorohod decomposition problem.

Just like BSDEs are the backward stochastic version of ODEs, reflected BSDEs

are the backward stochastic version of ODEs with an obstacle constraint. And the

underlying problem of the latter deterministic problem is the Skorohod decomposition

problem.

Given a time interval [0, T ], a path x and an obstacle l, both [0, T ] −→ R, the

Skorohod decomposition problem consists in finding a pair of paths (y, k) (all the paths

we consider are continuous), with k increasing starting from 0, such that x decomposes

into x = y − k, y satisfying the constraint y ≥ l. There would of course be many such

decompositions. Given one, (y, k), one can add any increasing path k′ to both y and k
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and still have a solution. The problem requires that one finds a solution with minimal

k, which makes it unique. If k has to be as small possible, the idea is to take dkt = 0 as

much as possible, and allowing dkt > 0 only when the contraint y ≥ l would otherwise

be broken, which can only happen when the constraint is already “saturated” (yt = lt).

So the problem requires that we find (y, k) satisfying 1yt>ltdkt = 0.

Note that since k0 = 0, in order for the problem to have a solution the condition

l0 ≤ x0 = y0 must be satisfied. One can rewrite things in differential form. Instead of

decomposing x = y − k let us rather write y = x+ k, so
dy = dx+ dk

y0 = x0

y ≥ l and 1y>ldk = 0

We see that the problem consists in finding a path y that tracks x as much as possible,

mirroring its moves so long as this does not break the constraint y ≥ l.

The path x could be given by dxt = ftdt. Now, when dxt = f(yt)dt, the problem

would be an ODE with an (obstacle) constraint.

Let us make the following remark. Whether dxt drives y down toward the obstacle

or whether dlt drives the obstacle up toward y is really the same from a certain point

of view (from the point of view of whether the constraint is being broken whether k

should be active). In fact, one can always do a change of frame of reference (translation

on the space of paths, −→y := y + h,
−→
l := l + h, −→x := x + h, k being unchanged). So

on pictures or in some computations, one can always assume that one deal with the

obstacle l = 0 (take h = −l) or alternatively have a path x constant (take h = −x).

There are several ways to solve the Skorohod problem One way to describe the

solution is by giving its dynamics. One sets y0 = x0 and k0 = 0. Then

dyt =



if yt > lt then dxt (the constraint can’t be broken here, set dkt = 0)

if yt = lt then

if dxt ≥ dlt then dxt (contact but no passing below, set dkt = 0)

if dxt < dlt then dlt (to avoid passing below, and set dkt = dlt − dxt)

38



Another way to solve it is to first to a change of frame of reference so that dxt = 0. So

consider −→xt = xt − (xt − x0),
−→
lt = lt − (xt − x0), −→yt = yt − (xt − x0). Then it becomes

clear that

−→yt = sup
{
x0, (
−→
l s)s≤t

}
and then just define k = −→y −−→x . Undoing the transform leads to yt = xt + sup{(ls −
xs)

+, s ≤ t} = xt + kt. Note that −→y t = yt −
∫ t

0
dxs is the smallest increasing path

(starting from x0) dominating
−→
l t = lt −

∫ t
0
dxs.

Having seen the Skorohod decomposition problem, and more generally ODEs with

an obstacle constraint, a reflected BSDE is the backward stochastic version of the

ODE with obstacle (when the drift is a fixed process ftdt which does not depend on

the solution, it is the backward stochastic version of the Skorohod problem).

Let us note that there is not really reflection here. In the simple case where x =

l = 0, then y = k = 0 is the solution and one cannot say that y = 0 is in any way

reflected on the obstacle l = 0. But the backward stochastic version is nonetheless

known as BSDEs with reflection. As mentioned above, it is more a problem of finding

a path y that follows as much as possibly the dynamics prescribed by x (by ftdt),

while satisfying a constraint.

Snell envelopes and optimal stopping.

Just like the underlying problem for a BSDE was the semimartingale decomposi-

tion, the underlying problem for a reflected BSDE is the Snell envelope (by underlying

problem here we mean the base case where the drift is a fixed process, not dependend-

ing on the solution).

Let us consider a reflected BSDE with drift ftdt :
dYt = −ftdt− dKt + ZtdWt

YT = ξ , Yt ≥ Lt

1Yt>LtdKt = 0
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Doing as above, we can define
−→
Y t = Yt +

∫ t
0
fsds and see that

d(Yt +

∫ t

0

fsds) = −dKt + ZtdWt.

So
−→
Y is a supermartingale, which dominates L+ V where Vt =

∫ t
0
fsds. And it is the

smallest such supermartingale, that is to say the Snell envelope of L + V : Y + V =

Snell(L+ V ).

One can see that Y is given by

Yt = sup
τ
E

(∫ τ

t

fudu+ Lτ1τ<T + ξ1τ=T

∣∣∣Ft)
where τ runs through the stopping times T Tt such that t ≤ τ ≤ T . This is the optimal

stopping representation of Y : each Yt is the value of an optimal stopping problem.

In the same way as the solutions of BSDEs can be thought of as nonlinear martin-

gales, solutions of reflected BSDEs can be though of as nonlinear Snell envelopes.

Link with BSDEs : supersolutions.

In view of the above idea, that of a smallest process dominating another one, we

can give an alternative description of the solution to a reflected BSDE.

Given a BSDE {
dYt = −f(Yt, Zt)dt+ ZtdWt

YT = ξ ,

a supersolution is any (Y ′, Z ′) such that{
dY ′t ≤ −f(Y ′t , Z

′
t)dt+ Z ′tdWt

Y ′T = ξ .

Setting dK ′t to be the difference −dY ′t − f(Y ′t , Z
′
t)dt+Z ′tdWt ≥ 0, we see that, by very

definition of dK ′, dY ′t = −f(Y ′t , Z
′
t)dt− dK ′t +Z ′tdWt. Conversely, for any (Y ′, Z ′, K ′)

satisfying the latter equation, with dK ′t ≥ 0, (Y ′, Z ′) is a supersolution to the BSDE.

The solution to a reflected BSDE is therefore a supersolution to the correspond-

ing BSDE. It is one that dominates the obtacle. And the minimality condition (the
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Skorohod condition) says that it is the smallest supersolution dominating the obstacle.

Link with BSDEs : penalization.

So far, except maybe in the latest subsubsection, we have described reflected BSDEs

in an intrinsic way. Whether when saying that reflected BSDEs are the backward

stochastic version of ODEs with obstacle, or when saying that reflected BSDEs produce

nonlinear Snell envelopes, we did not rely on BSDEs to understand reflected BSDEs.

These ideas are the ones at work in the research presented in this chapter. However,

it will be good to have also in mind the following approach to reflected BSDEs, which

has been used in several existing works.

Reflected BSDEs can be seen at the limit of penalized BSDEs,{
dY n

t = −
[
f(Y n

t , Z
n
t ) + n(Y n

t − Lt)−
]
dt+ Zn

t dWt

Y n
T = ξ

In the above dynamics equation, Y n is subject to an upward drift (or force) n(Y n
t −

Lt)
−dt, in addition to f(Y n

t , Z
n
t )dt. This force is proportional to how far below the ob-

stacle Lt the solution Y n
t is, but the proportionality coefficient, n, becomes increasingly

big. It acts somehow like an elastic force, and at the limit n −→ +∞ becomes rigid,

preventing the solution from passing under L at all. Set dKn
t = n(Y n

t −Lt)−dt. If one

can show that the sequence converge (Y n, Zn, Kn), and converges in some sense strong

enough that one can take the limit on the above equation (this can be proven under

standard assumptions), then the limit (Y ∞, Z∞, K∞) is a solution to the reflected

BSDE.

3.1.3 Review of the literature

Reflected BSDEs were introduced by El Karoui, Kapoudjian, Pardoux, Peng and

Quenez in [30]. These authors considered the case where f is Lipschitz, the terminal

condition is square-integrable and the lower obstacle a continuous square-integrable

semimartingale, the natural extension of Pardoux and Peng [65].

The first results for quadratic BSDEs (that is, when f is allowed to have a quadratic

growth in z) were obtained by Kobylanski in [50], under the assumption that ξ is

bounded and f Lipschitz in y. Lepeltier and San Martin [55] allowed f to have slightly
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superlinear growth in y. Kobylanski, Lepeltier, Quenez and Torrès [51] were then able

to prove the analogue results for RBSDEs by extending the techniques of [50] and [55].

The coefficient f can have any growth in the y variable if it satisfies the monotonic-

ity condition (see for instance Pardoux [64]), which is encountered in reaction-diffusion

equations. Briand, Lepeltier and San Martin [15] studied the case of quadratic growth

BSDEs with such an assumption, and this was then extended to reflected BSDEs by

Xu [79].

Briand and Hu [13, 14] extended Kobylanski’s results [50] to the case of an un-

bounded terminal condition, and this case was further studied in the recent works of

Delbaen, Hu and Richou [25, 26] and Barrieu and El Karoui [4]. Lepeltier and Xu [56]

could then treat the case of RBSDEs with unbounded ξ, while Bayraktar and Yao [5]

removed the condition that L be bounded.

However, the case of quadratic BSDEs remains significantly more difficult than that

of Lipschitz BSDEs, and the methods used initially are often quite involved. Recently,

Tevzadze [77] and Briand and Elie [12] gave simpler approaches for the case when ξ is

bounded.

The above works ([30], [51], [79], [56] and [5]) concerning the well-posedness of

reflected BSDEs considered a Brownian setting. However, BSDEs have been studied

in a general martingale setting (see El Karoui and Huang [29], Tevzadze [77], Morlais

[62], Barrieu and El Karoui [4]), and in a general filtered probability space in Cohen

and Elliott [20].

In this chapter, we obtain the well-posedness of a general class of quadratic RB-

SDEs driven by a continuous martingale and with a bounded terminal condition in

a simple, self-contained way. We show the existence of solutions in the cases where

the dependence of f in y is Lipschitz, slightly-superlinear or monotone with arbitrary

growth. We also obtain the special comparison theorem for the increasing processes

under minimal assumptions. Finally, we obtain a local Lipschitz estimate in BMO for

the martingale part of the solution.

3.1.4 Overview of the content of this chapter.

We now describe the organization of this chapter, explaning the results we obtained

and the techniques used for this, thereby specifying our own contribution.
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In section 3.3, we first obtain the standard comparison theorem in our setting,

using a linearization and the BMO argument from Hu, Imkeller and Müller [40], as

opposed to via an optimal stopping representation and comparison for BSDEs (see

[51]). We note that this result, which guarantees uniqueness, holds naturally for f

only locally Lipschitz in y, instead of globally Lipschitz as often assumed ([12], [77]).

We then prove the special comparison theorem for reflected BSDEs, which allows one

to compare the increasing processes when one RBSDE solution dominates another.

This theorem was first proved in Hamadène, Lepeltier and Matoussi [37], and reused

in Peng and Xu [71]. In the papers ([37], [71], [54], [51]) where it appears, the proof

always relies on the penalization approach to reflected BSDEs and the comparison

theorem for standard BSDEs, comparing quantities which, at the limit, become the

increasing processes. The statement and the new proof we provide here are more

intimately related to the nonlinear Snell envelope approach reflected BSDEs and hold

under minimal assumptions. In particular, because we do not rely on a comparison

theorem, they hold without the regularity assumptions usually made on f .

In section 3.4 we prove the existence of solutions to the reflected BSDEs when f is

quadratic in z and Lipchitz in y. To this end, we generalize the technique introduced

by Tevzadze [77] for BSDEs. The idea there is to first use the fixed point theorem

to obtain a solution to a quadratic BSDEs when f(·, 0, 0) and ξ are sufficiently small

(f(s, 0, 0)ds is the residual drift, that drives the solution even if (Ys, Zs) = (0, 0)), and

then to build upon this partial result to obtain a solution for general f(·, 0, 0) and ξ.

This technique can be understood as a type of “vertical” splitting and recombina-

tion, and is in that sense an analogue to what is done for Lipschitz BSDEs. In that

classical case, if one works with the natural norm on the space where one looks for

solutions, which in that context is the space of square-integrable processes, one finds

that the fixed point theorem applies if the time interval is small enough. A natural way

to use this is then to split (“horizontally”) a general time interval into pieces small

enough that one can obtain a solution on each interval, and patch them together to

obtain a solution on the whole interval. For quadratic BSDEs, since one can apparently

solve the BSDE only for small data, the idea is to split a general set of data into pieces

small enough that one can obtain a solution for each piece, and then combine them

to obtain a solution to the initial problem (this is the spirit in which the technique is

decribed in [78] and [48]). In our view, one can also understand this method as a series
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of perturbations. One first solves a BSDE with microscopic data, then successively

solves pertubation equations and adds the associated solutions, allowing the size of

the data to grow at each step. At the end, one has built a solution to the initial BSDE

with macroscopic data.

In order to use the fixed point theorem, one mainly needs to understand the un-

derlying backward stochastic problem. For BSDEs, this underlying problem is the

semimartingale decomposition. For reflected BSDEs, it is a Snell envelope problem.

However, for the perturbation procedure to work well, the underlying problem should

be a linear problem (for instance, it has been applied recently in Kazi-Tani, Possamai

and Zhou [48] to BSDEs with jumps). This way, the equations satisfied by the per-

turbations are of the same nature as the equations satisfied by the solutions. This is

not the case for reflected BSDEs. It is however possible to identify the equation that a

perturbation should satisfy. The obstacle cannot be perturbed during the procedure,

but this can be dealt with by assuming from the start that it is negative, a case which

covers all the others by a simple translation. In particular, unlike in [51], we do not

need L to be bounded but only require it to be upper bounded.

We then study the stability of the solution with respect to changes in the terminal

condition ξ and in the residual drift f(·, 0, 0). We obtain for the martingale part of the

solution a local Lipschitz estimate in the space BMO. Global Lipschitz bounds in Hp

were obtained already in Briand, Delyon, Hu, Pardoux and Stoica [11] (see also Briand

and Confortola [9], Ankirchner, Imkeller and Dos Reis [2]). Kazi-Tani, Possamai and

Zhou [48] provide a global 1
2
-Hölder estimate in the smaller space BMO. Here, we

can obtain a stronger regularity for small perturbations, essentially by bootstrapping

a weaker regularity result.

Finally, in section 3.5, we extend the scope of the existence theorem of section 3.4. In

that latter case, f is Lipschitz in y and the sequence of perturbations described above

can be performed uniformly without problem. However, when the first derivative fy is

not a bounded function of y, the maximal allowed size for a perturbation depends on

the size of the solution to the reflected BSDE that one wants to perturb, so it is not

clear a priori that the procedure would terminate after finitely many perturbations.

We show, however, that this is the case as soon as one can obtain an a priori bound

for Y in S∞. We can therefore extend the existence theorem of section 3.4 to the case

where f is slightly-superlinear and to the case where f is monotone with arbitrary
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growth (as studied respectively by [51] and [79] in a Brownian setting), using the same

perturbation technique.

In the following section, we specify the notation and the framework that will be

used throughout this chapter, and we give the precise assumptions under which we

work.

3.2 Setting

We will study the following general reflected BSDE :

dYs = −dV (Y,N)s − dKs + dNs,

YT = ξ,

Yt ≥ Lt for all t ≤ T , and

K increasing, continuous, starting from 0 and such that 1{Ys>Ls}dKs = 0

(3.2.1)

where the drift is given by

dV (Y,N)s = f(s, Ys, Zsσs)dCs + d〈ν,N⊥〉s + gsd〈N⊥〉s.

This is referred to as the reflected BSDE of data (V, ξ, L) = (f, ν, g, ξ, L).

The framework is a filtered probability space
(
Ω,F = (Ft)t∈[0,T], P

)
satisfying the

usual conditions, where T > 0 is a finite time horizon. T is an F -stopping time valued

in [0,T] (bounded stopping time). The continuous square-integrable martingale M is

assumed to be BMO (see below). All the processes considered are continuous.

C is a continuous and progressively measurable increasing process (starting from

0) such that, roughly, all the finite variational processes which are related to the

data (not depending on the solution) are absolutely continuous with respect to it.

In particular, d〈M〉s = asdCs = σsσ
∗
sdCs. It is assumed that the positive symmetric

matrix a (or equivalently σ) is bounded away from 0 and infinity (i.e. bounded and

uniformly elliptic).

The data of the BSDE (coefficients f, ν, g of the drift V , terminal condition ξ,

obstacle L) are as follows :
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• f : Ω× [0, T ]×R×M1,d(R)→ R is Prog⊗B(R)⊗B(M1,d(R))-measurable, where

Mn,d(R) is the space of n × d matrices with entries in R. Prog = Prog(FT ) is

the progressively measurable sigma-field on the interval [|0, T |] (the set of pairs

(ω, t) such that t ≤ T (ω)).

• ν is a BMO martingale orthogonal to M (that is 〈ν,M〉 = 0)

• g is a progressively measurable and bounded scalar process.

• ξ is an FT -measurable, bounded random variable.

• L is a continuous semimartingale bounded above.

Throughout the chapter, we assume that f has at most quadratic growth in the variable

z, in the following sense :

(Aqg) There exists a growth function λ(·) (i.e. λ : R → R+ symmetric, increasing on

R+, bounded below by 1) and a positive process h ∈ L2
BMO (i.e.

∫
hdM ∈ BMO,

see below) such that :

|f(t, y, z)| ≤ λ(y)
(
h2
t + |z|2

)
.

The assumption as written above allows for any growth in y, although more specific

assumptions on this are made in sections 3.3, 3.4 and 3.5.

Solutions to the reflected BSDE.

A solution to the reflected BSDE is generally understood as a triple S = (Y,N,K)

where Y is a semimartingale, N a square-integrable martingale (∈ H2) and K an

increasing process (starting from 0), such that (3.2.1) is satisfied, with N =
∫
ZdM +

N⊥.

Note that a solution can also be understood as a pair S = (Y,N) such that,

definining K from K0 = 0 and the dynamics equation in (3.2.1), K is indeed found to

be increasing and satisfies the Skorohod condition. This will often be what is meant

by solution in the rest of the chapter.

Under the assumption of quadratic growth and bounded terminal condition, we

consider only bounded solutions : Y ∈ S∞. For those, N is found to be a BMO

martingale (see the a priori estimate of proposition 3.2.1 below). So a solution will
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always be understood as being in S∞×BMO (×A), where BMO and A are described

below.

Spaces of processes, notation.

We will make use of the following notation for particular spaces of processes, which

we define or recall the definition of.

• BMO(P ) is the space of all the BMO P -martingales, that is those for which the

norm

‖N‖2
BMO(P ) = sup

t∈T T0

‖EP (〈N〉T − 〈N〉t|Ft)‖∞

is finite, where T T0 is the set of stopping times t such that 0 ≤ t ≤ T . The

mention of the measure P will be omitted whenever no confusion is possible.

When X ∈ BMO, then E(X) is a UI martingale, so one can define a measure Q

by stating that on Ft, dQ
dP

= E(X)t. Also, we will use frequently the fact that for

any N ∈ BMO(P ), Ñ = N−〈X,N〉 is in BMO(Q) (cf Kazamaki [47], theorems

2.3 and 3.3).

• L2
BMO is the space of processes h such that

∫
hdM ∈ BMO. We equip it with

the norm

‖h‖2
L2
BMO

= sup
t

∥∥∥∥E(∫ T

t

h2
sdCs

∣∣∣Ft)∥∥∥∥
∞

• A is the space of accumulators, that is : progressively measurable, continuous,

increasing processes starting from 0.

• L∞,2 is the space of processes x such that
∫ T

0
|xs|2dCs ∈ L∞, and L∞,1 is that of

processes such that
∫ T

0
|xs|dCs ∈ L∞, with norms ‖x‖2

∞,2 = ‖
∫ T

0
|xs|2dCs‖∞ and

‖x‖∞,1 = ‖
∫ T

0
|xs|dCs‖∞.

In the growth assumptions on y made later on, we use a fixed positive process r ∈ L∞,2,

which is part of the framework (like T , M , C). It is there to take into account the fact

that CT might not be bounded (in facts, if C incorporates a local time of a diffusion
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on a regular boundary, it has exponential moments but is not bounded). In the case

where dCs = ds and T is a constant, r = 1 and ‖r‖∞,2 =
√
T .

For processes S = (Y,N) ∈ S∞ × BMO(Q), we use the norm ‖S‖2
Q := ‖Y ‖2

S∞ +

‖N‖2
BMO(Q). As usual the mention of the measure Q is omitted whenever no confusion

arises. By L∞ we denote the space of bounded random variables, and we use the norm

‖ ‖∞, whether those random variables are R-valued (like ξ) or path-valued (like g).

BMO property for N .

Proposition 3.2.1. Let f satisfy (Aqg), ν ∈ BMO and g be bounded. Let Y be a con-

tinuous semimartingale, N be a square-integrable martingale and K be an increasing

process such that Y has the decomposition :

dY = −dV (Y,N)− dK + dN,

where dV (Y,N)s = f(s, Ys, Zsσs)dCs + d〈ν,N⊥〉s + g(s)d〈N⊥〉s. If Y is bounded (i.e.

Y ∈ S∞), then N ∈ BMO and K ∈ ABMO.

Here,ABMO refers to the increasing processesK ∈ A such that the norm ‖K‖ABMO
=

supt‖E
(
KT −Kt|Ft

)
‖∞ is finite. Note that this statement is, to some extent, not so

much about solutions to a (possibly reflected) BSDE but about quadratic semimartin-

gales (see Barrieu and El Karoui [4]), and quadratic semimartingales are considered

here up to a monotonous process.

Remark 3.2.2. The result implies in particular the following : if Y is a bounded

semimartingale with decomposition dY = −dV − dK + dN , with K monotonous

(which boils down to increasing, up to considering −Y ) and if the process V is in

L1
BMO (i.e. supt‖E

( ∫ T
t
|dVs|

∣∣Ft)‖∞ < +∞), then N ∈ BMO and K ∈ ABMO.

Proof. The proof uses the usual exponential transform. Let µ ∈ R, whose sign and

value will be chosen later. By Itô’s formula for the process exp(µY ) between a stopping

time t ∈ T T0 and T one has

eµYt − µ
∫ T

t

eµYsdKs +
µ2

2

∫ T

t

eµYsd〈N〉s = eµYT + µ

∫ T

t

eµYsdVs

− µ
∫ T

t

eµYsdNs .

(3.2.2)
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Since Y ∈ S∞, the process eµY is bounded, and since N is a square-integrable martin-

gale,
∫
eµY dN is a martingale. We have

|dVs| ≤ |f(s, Ys, Zsσs)|dCs + |d〈ν,N⊥〉s|+ |gs||d〈N⊥〉s|,

and using the quadratic growth assumption on f we have

|f(s, Ys, Zsσs)| ≤ λ(Ys)
(
h2
s + |Zsσs|2

)
≤ Λ

(
h2
s + |Zsσs|2

)
,

where Λ = λ(‖Y ‖S∞). Using the Kunita-Watanabe inequality and ab ≤ a2 + b2, we see

that

E

(∫ T

t

eµYs|dVs|
∣∣∣Ft) ≤ ΛE

(∫ T

t

eµYs
(
h2
s + |Zsσs|2

)
dCs

∣∣∣Ft)+ E

(∫ T

t

eµYsd 〈ν〉s
∣∣∣Ft)

E

(∫ T

t

eµYsd
〈
N⊥
〉
s

∣∣∣Ft)+ ‖g‖∞E
(∫ T

t

eµYsd
〈
N⊥
〉
s

∣∣∣Ft) .

Recall that by the orthogonality of M and N⊥, d 〈N〉 = |Zσ|2dC + d
〈
N⊥
〉
, and

therefore both |Zσ|2dC and d
〈
N⊥
〉

are less than or equal to d 〈N〉. Therefore,

E

(∫ T

t

eµYs|dVs|
∣∣∣Ft) ≤ ΛE

(∫ T

t

eµYsh2
sdCs

∣∣∣Ft)+ E

(∫ T

t

eµYsd 〈ν〉s
∣∣∣Ft)

(
Λ + 1 + ‖g‖∞

)
E

(∫ T

t

eµYsd 〈N〉s
∣∣∣Ft) .

So, setting b = (Λ + 1 + ‖g‖∞), and taking the conditional expectation of (3.2.2) with

respect to Ft, one has

0−µE
(∫ T

t

eµYsdKs

∣∣∣Ft)+
{µ2

2
− |µ|b

}
E

(∫ T

t

eµYsd 〈N〉s
∣∣∣Ft)

≤ e|µ|‖Y ‖S∞ + |µ|
[
ΛE

(∫ T

t

eµYsh2
sdCs

∣∣∣Ft)+ E

(∫ T

t

eµYsd 〈ν〉s
∣∣∣Ft)]− 0.

We now choose µ = −4b, so µ2

2
− |µ|b = 4b2. Since b ≥ 1, b2 ≥ b. We now use the fact

that e−|µ|‖Y ‖S∞ ≤ eµYs ≤ e|µ|‖Y ‖S∞ and take the the supt, so we obtain finally

‖K‖ABMO
+ ‖N‖2

BMO ≤
e8b‖Y ‖S∞

2b

[
1 + 4b

(
Λ‖h‖2

L2
BMO

+ ‖ν‖2
BMO

)]
< +∞.
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Note however that while it indeed gives a bound for N ∈ BMO, this estimate does

not guarantee that if ‖Y ‖S∞ −→ 0 then ‖N‖BMO −→ 0.

3.3 Comparison theorems and uniqueness.

3.3.1 Comparison theorem.

We prove below the comparison theorem in our setting, which guarantees unique-

ness in the existence theorems of sections 3.4 and 3.5. The regularity assumption that

we require for the theorem to hold is, for notational simplicity, the following :

(ADf ) The function f is of class C1 (in the variable (y, z), for all ω, t) with

|fy(t, y, z)| ≤ ρ(y)r2
t and |fz(t, y, z)| ≤ ρ′(y)(ht + |z|),

for some growth functions ρ and ρ′, and some positive process h ∈ L2
BMO.

Theorem 3.3.1. Consider two sets of data (f, ν, g, ξ, L) and (f ′, ν, g′, ξ′, L′), and as-

sume that :

1. there exist solutions (Y,N,K) and (Y ′, N ′, K ′) to the corresponding reflected

BSDEs,

2. the parameters are ordered : f ′ ≤ f , g′ ≤ g, ξ′ ≤ ξ and L′ ≤ L,

3. f is regular enough : it satisfies (ADf ).

Then one has Y ′ ≤ Y .

While the proof given in [51] in a Brownian setting uses an optimal stopping

representation and the comparison theorem for BSDEs, we rely here on a classical

linearization argument and the properties of solutions to a linear BSDE. More precisely,

we study the positive part (∆Y )+, where ∆X = X ′−X for a generic quantity X, and

show that (∆Y )+ ≤ 0.
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Proof. Denoting by l the local time of ∆Y in 0, the Itô-Tanaka formula gives

d(∆Y )+
s = 1{∆Ys>0}d∆Ys +

1

2
dls

= 1{∆Ys>0}

[
− d∆Vs − d∆Ks + d∆Ns

]
+

1

2
dls .

(3.3.1)

Now, gathering terms, rewriting differences, and linearizing some,

d∆Vs =
[
f ′(s, Y ′s , Z

′
sσs)− f(s, Ys, Zsσs)

]
dCs

+ d〈ν, (N ′)⊥ −N⊥〉+ g′sd〈(N ′)⊥〉s − gsd〈N⊥〉s

=
[
(∆f)(s, Y ′s , Z

′
sσs) + f(s, Y ′s , Z

′
sσs)− f(s, Ys, Zsσs)

]
dCs

+ d〈ν,∆N⊥〉s + (∆g)s d〈(N ′)⊥〉s + gs

[
d〈(N ′)⊥〉 − d〈N⊥〉s

]

=
[
(∆f)(s, Y ′s , Z

′
sσs) + f(s, Y ′s , Z

′
sσs)− f(s, Ys, Z

′
sσs)

]
dCs

+
[
f(s, Ys, Z

′
sσs)− f(s, Ys, Zsσs)

]
dCs

+ d〈ν,∆N⊥〉s + (∆g)s d〈(N ′)⊥〉s + gsd〈(N ′)⊥ +N⊥,∆N⊥〉

=
[
∆f + Fy∆Y + Fz∆Zσ

]
dC

+ d〈ν ′,∆N⊥〉+ (∆g) d〈(N ′)⊥〉,

where

Fy(s) = Fy(s, Ys, Y
′
s , Z

′
sσs) =

∫ 1

0

fy(s, Ys + u∆Ys, Z
′
sσs)du ,

Fz(s) = Fz(s, Ys, Zsσs, Z
′
sσs) =

∫ 1

0

fz(s, Ys, Zsσs + u∆Zsσs)du and

ν ′ = ν +

∫
gd(N⊥ + (N ′)⊥) .
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So we can rewrite (3.3.1) as

d(∆Y )+ = −dD − Fy(∆Y )+dC + 1{∆Y >0}

[
d∆N − Fz∆ZσdC − d〈ν ′,∆N⊥〉

]
,

(3.3.2)

where

dD = 1{∆Y >0}

[
∆fdCs + ∆g d〈(N ′)⊥〉+ d∆K

]
− 1

2
dl

is a decreasing process. Indeed ∆f ≤ 0, ∆g ≤ 0, dl ≥ 0 and

1{∆Y >0}d∆K = 1{∆Y >0}dK
′︸ ︷︷ ︸

=0

− 1{∆Y >0}dK︸ ︷︷ ︸
≥0

≤ 0

because dK ≥ 0 and on {∆Y > 0} we have Y ′ > Y ≥ L ≥ L′, hence dK ′ = 0.

(∆Y )+ is therefore seen as the solution to a linear equation (3.3.2). Define the

integrating factor Bt = e
∫ t
0 Fy(u)dCu and the measure Q by dQ

dP
= E(

∫
Fzσ

−1dM + ν ′)t.

By the assumption on fz and the fact that h ∈ L2
BMO and ν, N , and N ′ are in BMO

(recall proposition 3.2.1 and the definition of a solution),
∫
Fzσ

−1dM + ν ′ is in BMO,

and therefore Q is indeed well defined. Then, ∆̃N = ∆N −
∫
Fz∆ZσdCs − 〈ν ′,∆N⊥〉

is a BMO(Q)-martingale. By the assumption on fy, the process B· is bounded so∫
Bu1∆Yu>0d∆̃Nu is again a Q-martingale. Therefore, looking at the dynamic of Ŷ =

BY under Q we finally find that

0 ≤ (∆Yt)
+ = EQ

(
e
∫ T
t Fy(v)dCv(∆ξ)+ +

∫ T

t

e
∫ u
t Fy(v)dCvdDu

∣∣∣Ft) ≤ 0 .

Remark 3.3.2. The previous theorem is stated, for convenience, for a function f

which is C1. Typically, for the comparison theorem one only requires f to be locally

Lipschitz, in which case the processes Fy, Fz have to be replaced by the differential

quotients : δyf(Y, Y ′, Z ′σ) = f(Y ′,Z′)−f(Y,Z′)
Y ′−Y 1Y 6=Y ′ , etc, and the above proof works as

long as Fy ∈ L∞,1 and Fz ∈ L2
BMO. These criteria are satisfied as soon as

(AlLip) There exist growth functions ρ and ρ′, and a process h ∈ L2
BMO such that

|f(t, y′, z′)− f(t, y, z)| ≤ ρ(y, y′)r2
t |∆y|+ ρ′(y, y′)

(
ht + |z|+ |z′|

)
|∆z| .
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Note : when ρ, ρ′ are constants this is the standard assumption of local Lipchitz regu-

larity made in the quadratic BSDE literature (see for instance Briand and Elie [12] and

Tevzadze [77]). However, since we are dealing with bounded solutions, the assumption

can be weakened to the case (AlLip) where ρ, ρ′ are growth functions.

3.3.2 Special comparison theorem.

When the two sets of data are in a comparison configuration and when the lower

obstacles are the same, one can say more than Y ′ ≤ Y and also compare the increasing

processes of the two solutions, K ′ and K.

Proposition 3.3.3. Let (f, g, ν, ξ, L) and (f ′, g′, ν, ξ′, L) be some data, and assume

that :

1. there exist solutions S = (Y,N,K) and S ′ = (Y ′, N ′, K ′) to the corresponding

RBSDEs,

2. the drift coefficients are ordered : f ′ ≤ f , g′ ≤ g,

3. Y ′ is dominated by Y : Y ′ ≤ Y .

Then it is the case that dKt ≤ dK ′t.

The intuition is quite clear. First, since one has Y ′t ≤ Yt, if Y doesn’t touch the

barrier (Yt > Lt), then dKt = 0 and whether Y ′t > Lt or Y ′t = Lt, one has dK ′t ≥ 0 =

dKt. So the only non-trivial case is when Y touches the barrier, and therefore Y ′ as

well. In that case, since the extra forces dK ′ and dK are minimal, they only prevent

the drifts dV ′ and dV from driving the solutions Y ′ and Y under the obstacle. But

since dV ′t ≤ dVt in that case, the correction that could be needed for Y will be less

than that needed for Y ′. The proof makes this heuristics rigorous.

Unlike in [37], [71], [54], [51], the proof we give here works under minimal assump-

tions and in particular does not require a regularity assumptions on f , since it does

not rely on the comparison theorem for BSDEs.

Proof. In this proof, contrary to the rest of the chapter, ∆X denotes X − X ′ for a

generic quantity X. In order to deal with what happens locally when the process ∆Y

touches 0, we proceed as in El Karoui et al. [30] : write down the structure of ∆Y

and ∆Y +, argue that these two processes are equal (since by assumption ∆Y ≥ 0),

53



identify their finite variational and martingale parts, and then extract the relevant

information. Our goal is to prove that d∆K ≤ 0.

We have

d∆Y = −d∆V − d∆K + d∆N and

d(∆Y )+ = 1{∆Y >0}d∆Y +
1

2
dl ,

where l is the local time of ∆Y at 0. Identifying the finite variational and martingale

parts, we see that

−d∆V − d∆K = 1{∆Y >0}

(
− d∆V − d∆K

)
+

1

2
dl and

d∆N = 1{∆Y >0}d∆N ,

that is to say

1{∆Y=0}

(
− d∆V − d∆K

)
=

1

2
dl and

1{∆Y=0}d∆N = 0 .

The second equation implies, by Itô’s isometry and the orthogonality between

M and ∆N⊥, that 1∆Y=0

(
|∆Zσ|2dC + d〈∆N⊥〉

)
= 0. So we know that on the set

{Y ′ = Y } (i.e. against 1{∆Y=0}) we have Y = Y ′ and Z = Z ′. We also notice that

by the Kunita-Watanabe inequality, 1{∆Y=0}d〈ν ′,∆N⊥〉 = 0 for any continuous semi-

martingale ν ′.

The drift term can be rewritten, using ∆ν = ν − ν = 0,

d∆Vt =
(
f(S)− f ′(S ′)

)
dC + d

〈
ν,N⊥

〉
− d

〈
ν, (N ′)⊥

〉
+ gd

〈
N⊥
〉
− g′d

〈
(N ′)⊥

〉
=
(
f(S)− f(S ′) + (∆f)(S ′)

)
dC + d

〈
ν,∆N⊥

〉
+ d

〈
∆ν, (N ′)⊥

〉
+ g
[
d
〈
N⊥
〉
− d

〈
(N ′)⊥

〉 ]
+ (∆g)d

〈
(N ′)⊥

〉
=
[(
f(S)− f(S ′)

)
dC + d

〈
ν,∆N⊥

〉
+ gd

〈
N⊥ + (N ′)⊥,∆N⊥

〉 ]
+
[
(∆f)(S ′)dC + d

〈
(∆ν), (N ′)⊥

〉
+ (∆g)d

〈
(N ′)⊥

〉 ]
=
[(
f(S)− f(S ′)

)
dC + d

〈
ν ′,∆N⊥

〉 ]
+
[
d(∆V )(S ′)

]
,

where ν ′ = ν +
∫
gd(N⊥ + (N ′)⊥). By the assumptions on the coefficients, we know
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that d(∆V )(S ′)t =: dIt ≥ 0. So we find that against 1{∆Yt=0} we have

1{∆Yt=0}d∆Vt = 0 + 1{∆Yt=0}dIt .

In the end,

1{∆Y=0}
(
− dI − d∆K

)
=

1

2
dl ,

so

1{∆Y=0}d∆K = −1{∆Y=0} dI︸︷︷︸
≥0

−1

2
dl︸︷︷︸
≥0

≤ 0 ,

and so we have proven that 1{∆Y=0}d∆K ≤ 0. And when ∆Y > 0, one has Y >

Y ′ ≥ L′ = L so dK = 0 ≤ dK ′, and therefore 1{∆Y >0}d∆K ≤ 0, which completes the

proof.

3.4 Existence and stability.

In this section we work under the assumption that the derivatives of f are controlled

in the following way :

(Ader) f is twice continuously differentiable in the variables (y, z) and there exists

ρ, ρ′, λ > 0, and h ∈ L2
BMO such that

|fy(t, y, z)| ≤ ρr2
t and |fz(t, y, z)| ≤ ρ′(ht + |z|) ,

|fyy(t, y, z)| ≤ λr2
t , |fyz(t, y, z)| ≤ λrt and |fzz(t, y, z)| ≤ λ .

Rather than aiming to construct a solution to (3.2.1) by an approximation procedure

on the data, as was done in the Brownian setting (see [51]), we work in a more direct

way, as in section 5 of [30], and for this we adapt the pertubation procedure introduced

in [77] for BSDEs. We then analyze the dependence of the solution on the data.

3.4.1 Principle.

As said in the introduction, the strategy is to first apply the fixed point theorem.

To perform this, one will use only the following assumption on f :
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(AlocLip) The function f is differentiable at (0, 0) (in (y, z), for all (ω, s) ), and there exist

λ > 0 such that, writing βs = fy(s, 0, 0) and γs = fz(s, 0, 0), one has

– for all ω, s, y1, y2, z1, z2 :

|f(s, y1, z1)− f(s, y2, z2)− βs(y1 − y2)− γs(z1 − z2)|

≤ λ
(
rs|y1|+ rs|y2|+ |z1|+ |z2|

)(
rs|y1 − y2|+ |z1 − z2|

)
,

– γ ∈ L2
BMO and β ∈ L∞,1 (that is :

∫ T
0
|βs|dCs ∈ L∞),

which follows naturally from the assumption on the second derivative of f in (Ader).

In all generality, it allows also for quadratic growth in y. So what one actually proves

first is that when f satisfies this assumption (with possibly quadratric growth in y and

z), and when the data are small enough (in a sense to specify), there exists a solution.

The perturbations procedure is then carried as follows for a reflected BSDE with

obstacle L ≤ 0. Split the initial data in n pieces : (ξi)i=1...n and (αi)i=1...n such that∑n
i=1 ξ

i = ξ and
∑n

i=1 α
i = α, where α = f(·, 0, 0), and such that for each i, (ξi, αi) is

small enough. For the sake of the proof we take the particular decomposition given by

ξi := ξ(n) = 1
n
ξ and αi := α(n) = 1

n
α, for n big enough, though other decompositions

would do.

First, there is a solution S1 = (Y 1, N1, K1) to the reflected BSDE (3.2.1) with

small data (f − α + α1, ν, g, ξ1, L).

Now, unless otherwise specified, we denote by xk the sum Σk
j=1x

j, for a gen-

eral quantity x indexed by {1, . . . , n}. For i = 2 to n, having obtained a solution

S
i−1

= (Y
i−1
, N

i−1
, K

i−1
) to the reflected BSDE (3.2.1) with parameters (f − α +

αi−1, ν, g, ξ
i−1
, L), one incorporates one more (αi, ξi) in the system. One first con-

structs the perturbation Si = (Y i, N i, Ki) solving the pertubation equation

dY i = −dV i(Y i, N i)− dKi + dN i ,

Y i
T = ξi ,

Y
i−1

+ Y i ≥ L
i−1

+ Li ,

dK
i−1

+ dKi ≥ 0 and (dK
i−1

+ dKi)(Y
i−1

+ Y i > L
i−1

+ Li) = 0

(3.4.1)
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with drift given by

dV i(Y i, N i)s =
[
f(S

i−1
+ Si)− f(S

i−1
) + αis

]
dCs

+ d〈ν +

∫
2gd(N

i−1
)⊥, (N i)⊥〉s + gd〈(N i)⊥〉s

=
[
f
i−1

(Si) + αis
]
dCs + d〈νi−1, (N i)⊥〉s + gd〈(N i)⊥〉s ,

where νi−1 = ν +
∫

2gd(N
i−1

)⊥, and f
i−1

is the function f recentered around S
i−1

.

It satisfies f
i−1

(0) = 0 so the residual-drift (constant part) in this equation is given

by αi. So the parameters (f
i−1

+αi, νi−1, g, ξi, L) here are small in the required sense.

Finally, one sums S
i

:= S
i−1

+Si to obtain a solution to the reflected BSDE (3.2.1) of

parameters (f − α + αi, ν, g, ξ
i
, L). For i = n this provides a solution to the reflected

BSDE of interest.

This allows us to conclude to existence for those reflected BSDEs with negative

obtacles. But then we can show that up to translation, this covers all the cases where

the obstacle is upper-bounded.

Note already that the above perturbation equation (3.4.1) is not a RBSDE in the

variable Si = (Y i, N i, Ki) because Ki is not necessarily increasing. It could be viewed

as a reflected BSDE in the variable (Y i, N i, K
i
) but this point of view will not be used

(see the remark after proposition 3.4.4 and remark 3.4.5 after its proof). Also, note

that the solution S1 to the initial, small RBSDE can be viewed as a perturbation :

S
1

= 0+S1, 0 being the solution to the RBSDE of parameters (f−f(·, 0, 0), ν, g, 0, L).

So it would be enough to study only the pertubation equations, but it seemed clearer

to treat first the small reflected BSDEs and then deal with what changes for the

perturbation equations.

3.4.2 Existence for small reflected BSDEs.

Underlying problem.

In order to use the fixed point theorem, we need to check that the underlying

problem, that is to say the backward stochastic problem that one sees when the drift

dVt is a fixed process and doesn’t depend on the solution, defines indeed a map from

S∞ × BMO to itself. For reflected BSDEs, as was explained in El Karoui et al. [30],

the solution is the Snell envelope of a certain process (more precisely, Y +
∫ ·

0
dVs is the

Snell envelope of L+
∫ ·

0
dVs).
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Proposition 3.4.1. Let V ∈ L1
BMO (in the sense that supt‖E

( ∫ T
t
|dVs|

∣∣Ft)‖∞ < +∞),

ξ ∈ L∞, and L be upper bounded. There exist a unique (Y,N,K) ∈ S∞ × BMO ×A
solution to the reflected BSDE :

dY = −dV − dK + dN ,

YT = ξ ,

Y ≥ L and 1{Y >L}dK = 0 .

(3.4.2)

In particular, this applies when dVs = dV (y, n)s = f(s, ys, zsσs)dCs + d〈ν, n⊥〉s +

gsd〈n⊥〉s, for f satisfying the quadratic growth condition (Aqg), ν ∈ BMO, g ∈ L∞

and (y, n) ∈ S∞ ×BMO.

Proof. We know from proposition 5.1 in El Karoui et al. [30] that Yt is given by

Yt = ess sup
τ∈T Tt

E

(∫ τ

t

dVs + Lτ1τ<T + ξ1τ=T

∣∣∣Ft) , (3.4.3)

where T Tt are the stopping times τ such that t ≤ τ ≤ T , and that the square integrable

martingale N and the increasing process K are the Doob-Meyer decomposition of the

supermartingale Y +V . Our goal is to check that (Y,N) is indeed in S∞×BMO. For

an upper bound on Yt, we have

E

(∫ τ

t

dVs + Lτ1τ<T + ξ1τ=T

∣∣∣Ft) ≤ E

(∫ T

t

|dVs|
∣∣∣Ft)+ E

(
L+
τ

∣∣∣Ft)+ E

(
ξ+
∣∣∣Ft)

≤ ‖V ‖L1
BMO

+ ‖L+‖∞ + ‖ξ+‖

for any stopping time τ , so Yt ≤ ‖V ‖L1
BMO

+ ‖L+‖∞ + ‖ξ+‖. For a lower bound, since

Y solves (3.4.2), and using the fact that K is increasing, we have

Yt = E

(
ξ +

∫ T

t

dVs +
(
KT −Kt

)∣∣∣Ft)
≥ E

(
ξ +

∫ T

t

dVs

∣∣∣Ft)
≥ −‖ξ−‖∞ − ‖V ‖L1

BMO
,

so Y is indeed in S∞. One can then invoke remark 3.2.2 after proposition 3.2.1 to

conclude that N ∈ BMO.
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We now prove the second assertion. For a drift process V of the form described

above,

|dVs| ≤ |f(s, ys, zsσs)|dCs + |d
〈
ν, n⊥

〉
s
|+ |gs| |d

〈
n⊥
〉
s
|.

Using the assumption (Aqg) on f and the Kunita-Watanabe inequality, we have, sim-

ilarly as in proposition 3.2.1,

E

(∫ T

t

|dVs|
∣∣∣Ft) ≤ λ(‖y‖S∞)E

(∫ T

t

h2
s + |zsσs|2dCs

∣∣∣Ft)
+ E

(∫ T

t

|d
〈
ν, n⊥

〉
s
|
∣∣∣Ft)+ ‖g‖∞E

(∫ T

t

d
〈
n⊥
〉
s

∣∣∣Ft)
≤ Λ‖h‖2

L2
BMO

+
(

Λ + 1 + ‖g‖∞
)
‖n‖2

BMO + ‖ν‖2
BMO,

where Λ = λ(‖y‖S∞). Hence V ∈ L1
BMO as wanted.

Existence for RBSDEs with small data.

First one proves that there is a solution when the data are small and when, essen-

tially, the drift is purely quadratic in the solution.

Proposition 3.4.2. Let λ > 0. Let f satisfy assumption (AlocLipz), with parameters

(β = 0, γ = 0, λ, r) and be such α = f(·, 0, 0) ∈ L∞,1 (i.e. :
∫ T

0
|αs|dCS ∈ L∞). Let

ν = 0 ∈ BMO and g be bounded by λ. There exists ε0 = ε0(λ, r) > 0 such that if the

size of the data

D = ‖ξ‖∞ + ‖f(·, 0, 0)‖∞,1 + ‖L+‖∞ ≤ ε0 ,

then there exists a solution S = (Y,N,K) ∈ S∞×BMO(P )×A to the reflected BSDE

(3.2.1) with data (V, ξ, L), where dV (Y,N)s = f(s, Ys, Zsσs)dCs + gsd〈N⊥〉s .

More precisely,

ε0(λ, r) =
1

210λ
(
‖r‖2

∞,2 + 2
) .

Also, for any R ≤ R0(λ, r) = 1

25λ
(
‖r‖2∞,2+2

) , if D ≤ R
25

, then this solution is known
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to satisfy

‖S‖2 = ‖Y ‖2
S∞ + ‖N‖2

BMO(P ) ≤ R2 .

Proof. We study the map Sol : S∞×BMO → S∞×BMO which sends (y, n) on the

solution (Y,N) to the reflected BSDE
dY = −dV (y, n)− dK + dN ,

YT = ξ ,

Y ≥ 0 and 1{Y >0}dK = 0 ,

(3.4.4)

where dV (y, n)s = f(s, ys, zsσs)dCs + gsd〈n⊥〉s . This map is well defined according to

proposition 3.4.1, and (Y,N) ∈ S∞×BMO is a solution of (3.2.1) if and only if it is a

fixed point of Sol. It will be seen that Sol is not a contraction on the whole space, but

it is on a small ball, and it stabilizes such a small ball if the data are small enough.

Therefore there exists at least one fixed point in the space.

We study first the regularity of Sol. Take s = (y, n) and s′ = (y′, n′) in S∞×BMO,

write S = Sol(s), S ′ = Sol(s′), and ∆x = x′ − x for a generic quantity x. The

semimartingale decomposition of ∆Y is d∆Y = −d∆V−d∆K+d∆N , and the terminal

value is 0. Therefore, applying Itô’s formula to (∆Y )2 between t ∈ T T0 and T , and

taking the expectation conditional to Ft one has, since
∫ ·

0
∆Y d∆N is a martingale,

(∆Yt)
2 + E

(∫ T

t

d〈∆N〉s|Ft
)

= 02 + 2E
(∫ T

t

∆Ysd∆Vs|Ft
)

(3.4.5)

+ 2E
(∫ T

t

∆Ysd∆Ks|Ft
)
− 0 .

Let us now look at the third term on the right-hand side. Using the fact that Y dK =

LdK and Y ′dK ′ = LdK ′ one has

∆Y d∆K = (Y ′ − Y )dK ′ − (Y ′ − Y )dK

= (L− Y )︸ ︷︷ ︸
≤0

dK ′︸︷︷︸
≥0

− (Y ′ − L)︸ ︷︷ ︸
≥0

dK︸︷︷︸
≥0

≤ 0 .
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Let us now deal with the second term :

E
(∫ T

t

∆Ysd∆Vs|Ft
)
≤ ‖∆Y ‖∞E

(∫ T

t

|d∆Vs||Ft
)
.

The assumption on f gives

|d∆Vs| ≤ λ
(
rs|ys|+ rs|y′s|+ |zsσs|+ |z′sσs|

)(
rs|∆ys|+ |∆zsσs|

)
dCs

+ |gs||d〈∆n⊥, n⊥ + (n′)⊥〉s|.

Consequently, using the Cauchy-Schwartz and the Kunita-Watanabe inequalities, and

the elementary inequality (
∑n

i=1 ai)
2 ≤ n

∑
a2
i , we have

E

(∫ T

t

|d∆V |
∣∣∣Ft)

≤ 2
3
2λE

(∫ T

t

r2
s |ys|2 + r2

s |y′s|2 + |zsσs|2 + |z′sσs|2 dCs
∣∣∣Ft) 1

2

× E
(∫ T

t

r2
s |∆ys|2 + |∆zsσs|2 dCs

∣∣∣Ft) 1
2

+ ‖g‖∞E
(∫ T

t

d
〈
∆n⊥

〉
s

∣∣∣Ft) 1
2

E

(∫ T

t

d
〈
n⊥ + (n′)⊥

〉
s

∣∣∣Ft) 1
2

.

Now, by orthogonality, one has |zsσs|2dCs+d
〈
n⊥
〉
s

= d 〈n〉s so in particular each term

on the left-hand side of this equation is smaller than or equal to the right-hand side.
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So

E

(∫ T

t

|d∆V |
∣∣∣Ft)

≤ 2
3
2λE

(∫ T

t

(
r2
s |ys|2 + r2

s |y′s|2
)
dCs + d 〈n〉s + d 〈n′〉s

∣∣∣Ft) 1
2

× E
(∫ T

t

r2
s |∆ys|2dCs + d 〈∆n〉s

∣∣∣Ft) 1
2

+ ‖g‖∞E
(∫ T

t

d 〈∆n〉s
∣∣∣Ft) 1

2

E

(∫ T

t

d 〈n+ (n′)〉s
∣∣∣Ft) 1

2

≤ 2
3
2λ
(
‖r‖2

∞,2‖y‖2
S∞ + ‖r‖2

∞,2‖y′‖2
S∞ + ‖n‖2

BMO + ‖n′‖2
BMO

) 1
2

×
(
‖r‖2

∞,2‖∆y‖2
S∞ + ‖∆n‖2

BMO

) 1
2

+ ‖g‖∞‖∆n‖BMO ‖n+ n′‖BMO

≤ 2
3
2λ
(
‖r‖2

∞,2 + 1
)(
‖y‖2

S∞ + ‖n‖2
BMO + ‖y′‖2

S∞ + ‖n′‖2
BMO

) 1
2

×
(
‖∆y‖2

S∞ + ‖∆n‖2
BMO

) 1
2

+ ‖g‖∞
(
‖n‖BMO + ‖n′‖BMO

)
‖∆n‖BMO.

Now, by definition of the norm on S∞ × BMO, ‖y‖2
S∞ + ‖n‖2

BMO = ‖s‖2. Again,

this implies in particular that ‖n‖2
BMO ≤ ‖s‖2. So, recalling that ‖g‖∞ ≤ λ, using

(a2 + b2)
1
2 ≤ a+ b and majorizing 1 ≤ 2

3
2 (for the 2nd inequality), we have

E

(∫ T

t

|d∆V |
∣∣∣Ft) ≤ 2

3
2λ
(
‖r‖2

∞,2 + 1
)(
‖s‖2 + ‖s′‖2

) 1
2
(
‖∆s‖2

) 1
2

+ λ
(
‖s‖+ ‖s′‖

)
‖∆s‖

≤ 2
3
2λ
(
‖r‖2

∞,2 + 1
)(
‖s‖+ ‖s′‖

)
‖∆s‖+ 2

3
2λ
(
‖s‖+ ‖s′‖

)
‖∆s‖

≤ 2
3
2λ
(
‖r‖2

∞,2 + 1 + 1
)(
‖s′‖+ ‖s‖

)
‖∆s‖ .

Equation (3.4.5) then yields, using 2ab ≤ 1
4
a2 + 4b2 and (a+ b)2 ≤ 2(a2 + b2),

(∆Yt)
2 + E

(∫ T

t

d〈∆N〉s
∣∣∣Ft) ≤ 1

4
‖∆Y ‖2

S∞

+ 4× 23λ2
(
‖r‖2

∞,2 + 2
)2 × 2

(
‖s′‖2 + ‖s‖2

)
‖∆s‖2 ,
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and by taking the sup, we finally find, since ‖∆Y ‖S∞ ≤ ‖∆S‖, that

‖∆S‖2 ≤ 28λ2
(
‖r‖2

∞,2 + 2
)2(‖s‖2 + ‖s′‖2

)
‖∆s‖2 . (3.4.6)

Let us now study the size of S = Sol(s). Following the very same computations and

arguments as for ∆S we have first

(Yt)
2 + E

(∫ T

t

d〈N〉s|Ft
)
≤ ‖ξ‖2

∞ + 2E

(∫ T

t

YsdVs

∣∣∣Ft)+ 2E

(∫ T

t

YsdKs

∣∣∣Ft).
(3.4.7)

Since Y dK = LdK and, importantly, since K is increasing, one can write∫ T

t

YsdKs =

∫ T

t

LsdKs ≤ ‖L+‖S∞
(
KT −Kt

)
= ‖L+‖S∞

(
Yt − ξ −

∫ T

t

dV + (NT −Nt)

)
,

so that

E

(∫ T

t

Y dK
∣∣∣Ft) ≤ ‖L+‖S∞|Yt|+ ‖L+‖S∞‖ξ‖∞ + ‖L+‖S∞E

(∫ T

t

|dV |
∣∣∣Ft)+ 0 .

Reinjecting this into (3.4.7), then using the Young inequality, in particular the case

2ab ≤ 8a2 + 1
8
b2, leads to

(Yt)
2 + E

(∫ T

t

d〈N〉s|Ft
)
≤
(

2‖ξ‖2
∞ + 10‖L+‖2

S∞

)
+

1

4
‖Y ‖2

S∞ + 9E

(∫ T

t

|dV |
∣∣∣Ft)2

.

Now, by the assumption on f ,

|dVs| ≤
[
f(s, 0, 0) + λ

(
rs|ys|+ |zsσs|

)2
]
dCs + |gs|d〈n⊥〉s

≤
[
f(s, 0, 0) + 2λ

(
r2
s |ys|2 + |zsσs|2

)]
dCs + |gs|d〈n⊥〉s
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so, by the same argumentation as for ∆V above,

E

(∫ T

t

|dV |
∣∣∣Ft) ≤ ‖f(·, 0, 0)‖∞,1 + 2λ

(
‖r‖2

∞,2 + 1
)
‖s‖2 + λ‖s‖2

≤ ‖f(·, 0, 0)‖∞,1 + 2λ
(
‖r‖2

∞,2 + 2
)
‖s‖2.

Consequently, after taking supt and using ‖Y ‖S∞ ≤ ‖S‖, one has

‖S‖2 ≤
(

4‖ξ‖2
∞ + 20‖L+‖2

S∞

)
+

1

2
‖S‖2

+ 18× 2×
[
‖f(·, 0, 0)‖2

∞,1 + 22λ2
(
‖r‖2

∞,2 + 2
)2‖s‖4

]
.

Collecting the terms in ‖S‖2 and majorizing largely one has finally

‖S‖2 ≤ 29D2 + 29λ2
(
‖r‖2

∞,2 + 2
)2‖s‖4 , (3.4.8)

where D = ‖ξ‖∞ + ‖L+‖S∞ + ‖f(·, 0, 0)‖∞,1 and we used a2 + b2 + c2 ≤ (a+ b+ c)2.

To have Sol be a contraction on a closed (and therefore complete) ball B(0, R) of

S∞ ×BMO, we see from (3.4.6) and (3.4.8) that we would like the radius R and the

size D of the data to be sufficiently small so that 29λ2
(
‖r‖2

∞,2 + 2
)2
R2 ≤ 1

2
(< 1) and

29D2 + 29λ2
(
‖r‖2 + 2

)2
R4 ≤ R2. This is the case as soon as

R ≤ R0(λ, r) :=
1

25λ
(
‖r‖2

∞,2 + 2
)

D ≤ R

25
≤ R0(λ, r)

25
=: ε0(λ, r) .

We now remove the assumption that the linear terms in the drift are null.

Proposition 3.4.3. Let λ > 0. Let f satisfy assumption (AlocLipz), with parameters

(β, γ, λ, r) and be such that α = f(·, 0, 0) ∈ L∞,1 (i.e. :
∫ T

0
|f(s, 0, 0)|dCs ∈ L∞). Let

ν ∈ BMO and g be bounded by λ. There exists ε0 = ε0(β, λ, r) > 0 such that if the

size of the data

D = ‖ξ‖∞ + ‖f(·, 0, 0)‖∞,1 + ‖L+‖∞ ≤ ε0 ,

then there exists a solution S = (Y,N,K) ∈ S∞×BMO(P )×A to the reflected BSDE
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(3.2.1) with data (f, ν, g, ξ, L).

More precisely,

ε0(β, λ, r) =
e−2‖β‖∞,1

210λ
(
‖r‖2

∞,2 + 2
) .

Also, for any R ≤ R0(λ̂, r) = 1

25λ̂
(
‖r‖2∞,2+2

) , where λ̂ = exp
(
‖β‖∞,1

)
λ, if D ≤

exp(−‖β‖∞,1) R
25

, then this solution is known to satisfy

‖Ŝ‖2
Q = ‖Ŷ ‖2

S∞ + ‖ ̂̃N‖2
BMO(Q) ≤ R2 ,

where Ŷt = e
∫ t
0 βudCuYt and

˜̂
N is the martingale part of Ŷ under Q : dQ

dP
= E(

∫
γσ−1dM+

ν).

Proof. Write f(t, y, z) = βty+γtz+h(t, y, z), where βt = fy(t, 0, 0) and γt = fz(t, 0, 0)

(so that h(t, 0, 0) = f(t, 0, 0) = αt). Note that h satisfies (AlocLipz) with parameters

(β = 0, γ = 0, λ, r).

The idea is that if (Y,N,K) is a solution to the reflected BSDE (3.2.1), one can

eliminate the linear terms (βtYt + γtZtσt)dCt + d
〈
ν,N⊥

〉
t

in the drift dV (Y,N)t by

a pair of transforms and obtain a reflected BSDE with purely quadratic drift. Propo-

sition 3.4.2 guarantees the existence of a solution to such a RBSDE, so undoing the

transforms yields a solution to (3.2.1).

In view of this, let us define the measure Q by dQ
dP

= E(L) where L =
∫
γσ−1dM+ν.

Then M̃ := M − 〈L,M〉 = M −
∫
γσ∗dC is a BMO(Q)-martingale. Define also

B = exp
( ∫ ·

0
βudCu

)
, which is a bounded process. Define the transformed data

ĥ(s, y, z) = Bsh(s, B−1
s y,B−1

s z) ,

ĝs = B−1
s gs ,

ξ̂ = BT ξ ,

L̂ = BL .

Note that ĥ satisfies (AlocLipz) with parameters (β = 0, γ = 0, λ̂, r) where λ̂ =

λ exp(‖β‖∞,1). Proposition 3.4.2 ensures the existence of a solution (Ŷ ,
̂̃
N, K̂) ∈ S∞×

BMO(Q) × A under Q to the reflected BSDE (3.2.1) with transformed data (ĥ, ν =
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0, ĝ, ξ̂, L̂). Indeed,

‖ĝ‖∞ ≤ exp(‖β‖∞,1)‖g‖∞ ≤ exp(‖β‖∞,1)λ = λ̂ < +∞ ,

‖ĥ(·, 0, 0)‖∞,1 ≤ exp(‖β‖∞,1)‖f(·, 0, 0)‖∞,1 < +∞ ,

‖ξ̂‖∞ ≤ exp(‖β‖∞,1)‖ξ‖∞ < +∞ ,

‖L̂+‖S∞ ≤ exp(‖β‖∞,1)‖L+‖S∞ < +∞ ,

so if D ≤ exp(−‖β‖∞,1)ε0(λ̂, r) = exp(−2‖β‖∞,1)ε0(λ, r), proposition 3.4.2 applies.

Now, define Y = B−1Ŷ , Ñ =
∫ ·

0
B−1d

̂̃
N =

∫
Z̃dM̃ + Ñ⊥ and K =

∫ ·
0
B−1dK̂. The

Girsanov (Q→ P )-transform of Ñ ,

N = Ñ +
〈
L, Ñ

〉
=

∫
Z̃dM̃ + Ñ⊥ +

∫
γZ̃σdC +

〈
ν, Ñ⊥

〉
=

∫
Z̃dM +N⊥ ,

is a BMO(P )-martingale. Y is a bounded semimartingale, since B−1 is bounded, and

differentiating Y = B−1Ŷ shows that (Y,N,K) is a solution to the reflected BSDE

(3.2.1) with data (f, ν, g, ξ, L), as we wanted.

3.4.3 Perturbation of a reflected BSDE.

We now deal with existence for perturbation equations like (3.4.1). We assume

we have a solution S1 = (Y 1, N1, K1) to a reflected BSDE with data (f, ν, g, ξ1, L1),

and want to construct a solution S
2

to a reflected BSDE with slightly different data

(f+α2, ν, g, ξ1+ξ2, L1+L2). The idea is to construct the difference S2 = (Y 2, N2, K2) =

S
2− S1. The next proposition shows how this can be done despite the fact that K2 is

not an increasing process, so long as one does not change the obstacle (L2 = 0).

Proposition 3.4.4. Let f satisfy (Ader) with parameters (ρ, ρ′, λ, r, h) and be such

that α = f(·, 0, 0) ∈ L∞,1, let g ∈ L∞ be bounded by λ and ν ∈ BMO. Let also ξ1 ∈ L∞

and L1 be upper bounded. Assume that there exists a solution S1 = (Y 1, N1, K1) to

the RBSDE (3.2.1) with data (f, g, ν, ξ1, L1). Now let ξ2 ∈ L∞ and α2 ∈ L∞,1 (and
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L2 = 0). If

δD = ‖ξ2‖∞ + ‖α2‖∞,1 ≤ ε0(ρ, 2λ, r) =
e−2ρ‖r‖2∞,2

210(2λ)
(
‖r‖2

∞,2 + 2
) ,

then there exist S2 = (Y 2, N2, K2) where Y 2 ∈ S∞, N2 ∈ BMO(P ) and K2 has finite

variation, solving the perturbation equation

dY 2 = −dV 2(Y 2, N2)− dK2 + dN2 ,

Y 2
T = ξ2 ,

Y 1 + Y 2 ≥ L1 + L2 ,

dK1 + dK2 ≥ 0 and 1{Y 1+Y 2>L1+L2}(dK
1 + dK2) = 0

(3.4.9)

with drift given by

dV 2(Y 2, N2)s =
[
f(s, Y 2

s + Y 1
s , Z

2
sσs + Z1

sσs)− f(s, Y 1
s , Z

1
sσs) + α2

s

]
dCs

+d
〈
ν +

∫
2gd(N1)⊥, (N2)⊥

〉
s

+ gsd
〈

(N2)⊥
〉
s
.

So S
2

:= S1 + S2 is a solution to the RBSDE (3.2.1) with data (f + α2, g, ν, ξ1 +

ξ2, L1).

We further know that for any R ≤ R0(2̂λ, r) = 1

252̂λ
(
‖r‖2∞,2+2

) , where 2̂λ = 2λ exp
(
ρ‖r‖2

∞,2
)
,

if δD ≤ exp(−ρ‖r‖2
∞,2) R

25
, then this solution satisfies

‖Ŝ2‖2
Q = ‖Ŷ 2‖2

S∞ + ‖̂̃N2‖2
BMO(Q) ≤ R2 .

Note that while S2 = (Y 2, N2, K2) is not the solution to a reflected BSDE,

(Y 2, N2, K
2
) is. However the drift there would be dV 2(Y 2, N2)s−dK1

s , whose residual

action (when (Y 2, N2) = (0, 0)) is α2
sdCs − dK1

s , and this has no reason to be small.

We can therefore not simply invoke proposition 3.4.3 to construct (Y 2, N2, K
2
) and

we need to argue further.

Proof. The majority of computations that would need to be done here, related to the

dynamics of Y 2, are very similar to those in the proposition 3.4.3 about small RBSDEs,

so we only do the part which is different.

Define f(s, y, z) = f(s, y+Y 1
s , z+Z1

sσs)−f(s, Y 1
s , Z

1
sσs)+α

2
s. Note that since f satis-
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fies (Ader), f satisfies (AlocLip) with parameters (β, γ, 2λ, r), where β = fy(·, Y 1, Z1σ)

and γ = fz(·, Y 1, Z1σ). We have ‖β‖∞,1 ≤ ρ‖r‖2
∞,2 < +∞ and γ ∈ L2

BMO.

Following the same approach as for RBSDEs, we first look at the underlying prob-

lem of finding S2 = (Y 2, N2, K2) solving the perturbation equation (3.4.9) when the

drift process is

dV 2
s = dV 2(y2, n2)s =

[
f(s, y2

s + Y 1
s , z

2
sσs + Z1

sσs)− f(s, Y 1
s , Z

1
sσs) + α2

s

]
dCs

+d
〈
ν +

∫
2gd(N1)⊥, (n2)⊥

〉
s

+ gsd
〈

(n2)⊥
〉
s
.

If S2 is a solution, S
2

= S1 + S2 is then solution to the reflected BSDE (3.4.2) with

drift process given by dV
2

s = dV 1(Y 1, N1)S + dV 2(y2, n2)s =
[
f(s, y2

s + Y 1
s , z

2
sσs +

Z1
sσs) + α2

s

]
dCs + d〈ν, (N1)⊥ + (n2)⊥〉s + gsd〈(N1)⊥ + (n2)⊥〉s. But proposition 3.4.1

guarantees the existence and uniqueness of such an S
2
, hence that of the sought S2.

This allows to define a map Sol′ from S∞ ×BMO to itself.

Now, to find a solution S2 to the perturbation equation (3.4.9), we proceed like

in propositions 3.4.2 and 3.4.3, the difference being in dealing with dK2 which is not

monotonous anymore here. Up to doing the usual transformations (proposition 3.4.3),

let us assume that the drift is purely quadratic as in proposition 3.4.2. Then, Itô’s

formula first leads to the estimates

|∆Y 2
t |2 + E

(∫ T

t

d
〈
∆N2

〉
s

∣∣∣Ft) ≤ 2E

(∫ T

t

∆Y 2
s d∆V 2

s

∣∣∣Ft)+ 2E

(∫ T

t

∆Y 2
s d∆K2

s

∣∣∣Ft),
|Y 2
t |2 + E

(∫ T

t

d
〈
N2
〉
s

∣∣∣Ft) ≤ ‖ξ2‖2
∞ + 2E

(∫ T

t

Y 2
s dV

2
s

∣∣∣Ft)+ 2E

(∫ T

t

Y 2
s dK

2
s

∣∣∣Ft) .

For the term in ∆Y 2d∆K2 one has (even if L2 6= 0)

∆Y 2d∆K2 =
(
(Y 2)′ − Y 2

)
d(K2)′ −

(
(Y 2)′ − Y 2

)
dK2

=
(
(Y

2
)′ − Y 2)

(d(K
2
)′ − dK1)−

(
(Y

2
)′ − Y 2)

(dK
2 − dK1)

=
(
(Y

2
)′ − Y 2)

d(K
2
)′ −

(
(Y

2
)′ − Y 2)

dK
2

= (L
2 − Y 2

)︸ ︷︷ ︸
≤0

d(K
2
)′︸ ︷︷ ︸

≥0

−
(
(Y

2
)′ − L2)︸ ︷︷ ︸
≥0

dK
2︸︷︷︸

≥0

≤ 0.
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For the term in Y 2dK2 one has however, since L2 = 0,

Y 2dK2 = (Y 2 − L2)dK2 + L2dK2

=
(
(Y

2 − Y 1)− (L
2 − L1)

)
dK2 + L2dK2

=
(
(Y

2 − L2
)− (Y 1 − L1)

)
(dK

2 − dK1) + L2dK2

= (Y
2 − L2

)dK
2︸ ︷︷ ︸

=0

− (Y
2 − L2

)dK1︸ ︷︷ ︸
≥0

− (Y 1 − L1)dK
2︸ ︷︷ ︸

≥0

+ (Y 1 − L1)dK1︸ ︷︷ ︸
=0

+L2dK2

≤ L2dK2 = 0.

Having observed this, the rest is like the analysis of the map Sol and the ε0 is the

same. So in the end, provided that that

δD = ‖ξ2‖∞ + ‖α2‖∞,1 ≤ ε0(ρ, 2λ, r) =
e−2ρ|r2|

210(2λ)
(
‖r‖2

∞,2 + 2
) ,

there exists a solution (Y 2, N2, K2) to the perturbation equation (3.4.9).

Remark 3.4.5. Note that uniqueness holds for the perturbation equations. First,

under (Ader), (AlLip) holds and so does uniqueness for reflected BSDEs. Then, one

can argue that if Y 2 and (Y 2)′ are two solutions to (3.4.9), then Y
2

= Y 1 + Y 2 and

(Y
2
)′ = Y 1 + (Y 2)′ are two solutions to the same reflected BSDE, so Y

2
= (Y

2
)′, and

therefore Y 2 = (Y 2)′. Alternatively we can also argue that if (Y 2, N2, K2) is a solution

to (3.4.9), then (Y 2, N2, K
2
) solves a reflected BSDE (3.2.1) for which uniqueness

holds.

3.4.4 Existence theorem.

We can now prove the existence theorem of this section.

Theorem 3.4.6. Let f satisfy (Ader) with parameters (ρ, ρ′, λ, r, h) and be such that

f(·, 0, 0) ∈ L∞,1. Let ν ∈ BMO, g ∈ L∞ be bounded by λ, ξ ∈ L∞, and L be upper

bounded. There exists a solution (Y,N,K) ∈ S∞ × BMO ×A to the RBSDE (3.2.1)

with data (f, g, ν, ξ, L).

Proof. The proof is done in two steps. First, we show that one can indeed reduce the

problem to the case L ≤ 0, by translation. Existence for the RBSDE with L ≤ 0
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is then proved by repeatedly perturbing a solution to a similar RBSDE with smaller

data.

Step 1. If (Y,N,K) is a solution to the RBSDE, and U is an upper bound for L, set
−→
Y = Y − U . We see that

d
−→
Y = dY − dU = −dV − dK + dN − 0 = −d

−→
V − dK + dN ,

−→
Y T = ξ − U =:

−→
ξ ,

−→
Y = Y − U ≥ L− U =:

−→
L ,

1{−→Y >L−U}dK = 1{Y >L}dK = 0 .

Here we defined

d
−→
V = dV (Y,N)

= dV (
−→
Y + U,N)

= f(s,
−→
Y + U,Zσ)dC + d〈ν,N⊥〉+ gd〈N⊥〉

=
−→
f (s,

−→
Y , Zσ)dC + d〈ν,N⊥〉+ gd〈N⊥〉 .

It is clear that
−→
f still satisfies (Ader) with parameters (ρ, ρ′, λ, r, h). And from the

assumption on fy one has

|
−→
f (s, 0, 0)| = |f(s, U, 0)| ≤ |f(s, 0, 0)|+ ρr2

sU ,

so −→α =
−→
f (·, 0, 0) ∈ L∞,1.

In the end, (
−→
Y ,N,K) ∈ S∞ × BMO × A is a solution to the reflected BSDE of

parameters (
−→
f , ν, g,

−→
ξ ,
−→
L ) satisfying the same assumptions, but with

−→
L ≤ 0.

Step 2. We now focus on the case L ≤ 0. Consider ε0 given by proposition 3.4.4. For

n ∈ N∗, we define ξ(n) = 1
n
ξ and α(n) = 1

n
α (where α = f(·, 0, 0)). We split the data

uniformly, that is we consider ξi = ξ(n) and αi = α(n) for all i ∈ {1, . . . , n}. We choose

n big enough so that one has D(n) := ‖ξ(n)‖∞ + ‖α(n)‖∞,1 = 1
n
D ≤ ε0.

First, by proposition 3.4.3, there exists a solution (Y 1, N1, K1) to the RBSDE

(3.2.1) with data (f − α + α1, ν, g, ξ1, L).

Next, for i = 2 to n, having obtained a solution (Y
i−1
, N

i−1
, K

i−1
) to the RBSDE
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(3.2.1) with data (f − α + αi−1, ν, g, ξ
i−1
, L), proposition 3.4.4 provides a solution

(Y i, N i, Ki) to the perturbation equation (3.4.1) and therefore a solution (Y
i
, N

i
, K

i
)

to the RBSDE (3.2.1) with parameters (f − α+ αi, ν, g, ξ
i
, L). For i = n, since ξ

n
= ξ

and αn = α, (Y
n
, Z

n
, K

n
) is a solution to the RBSDE of interest, which ends the

proof.

3.4.5 Stability in S∞ ×BMO.

Given that uniqueness holds, the a posteriori bounds that come with the construc-

tion of a perturbation δS = S ′ − S to a solution S in proposition 3.4.4 readily shows

the continuity of the map (ξ, α) 7→ (Y,N), from L∞ × L∞,1 to S∞ ×BMO.

We now derive an estimate which shows that it is locally Lipchitz, by a sort of

bootstrap argument on the above stability result, as well as a BMO-norm equiva-

lence. In the proposition below, we consider a fixed set of data (f, ν, g, ξ, L) and the

associated solution S = (Y,N,K), and we define α = f(·, 0, 0). Now, for close data

(f + δα′, ν, g, ξ′, L) and (f + δα′′, ν, g, ξ′′, L), we consider the solutions S ′ and S ′′. Set

δξ′ = ξ′ − ξ and δξ′′ = ξ′′ − ξ. We use the notation δS ′ = S ′ − S, δS ′′ = S ′′ − S for

the perturbations around S and ∆S = S ′′ − S ′ = δS ′′ − δS ′. What we show is that if

(δξ′, δα′) and (δξ′′, δα′′) are sufficientily small, the distance ‖∆S‖ is linearly controlled

by the distance ∆D = ‖∆ξ‖∞ + ‖∆α‖∞,1 = ‖ξ′′ − ξ′‖∞ + ‖δα′′ − δα′‖∞,1. That is,

(ξ′, α′) 7→ (Y ′, N ′) is locally Lipschitz at the point (ξ, α).

Proposition 3.4.7. Suppose that f satisfies (Ader) with parameters (ρ, ρ′, λ, r, h),

that α = f(·, 0, 0) ∈ L∞,1, that ν ∈ BMO, that g is bounded by λ and that L is upper

bounded. We consider ξ ∈ L∞ and the solution (Y,N,K) to the reflected BSDE of

parameters (f, ν, g, ξ, L).

Now, for any (ξ′, δα′) and (ξ′′, δα′′) ∈ L∞ × L∞,1, let S ′ = (Y ′, N ′, K ′) and S ′′ =

(Y ′′, N ′′, K ′′) be the solutions to the reflected BSDEs of parameters (f + δα′, ν, g, ξ′, L)

and (f + δα′′, ν, g, ξ′′, L) respectively.

If δD′ = ‖δξ′‖∞ + ‖δα′‖∞,1 and δD′′ = ‖δξ′′‖∞ + ‖δα′′‖∞,1 satisfy

δD′ and δD′′ ≤ 1√
2
ε0(β, 2λ, r) =

1√
2

e−2‖β‖∞,1

210(2λ)
(
‖r‖2

∞,2 + 2
) ,
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where β = fy(·, Y, Zσ), then we have

‖Y ′′ − Y ′‖S∞ ≤ 25e2‖β‖∞,1
(
‖ξ′′ − ξ′‖∞ + ‖α′′ − α′‖∞,1

)
and

‖N ′′ −N ′‖BMO(P ) ≤ 25C(Y,N) e2‖β‖∞,1
(
‖ξ′′ − ξ′‖∞ + ‖α′′ − α′‖∞,1

)
,

where C(Y,N) is a constant depending on (Y,N).

Proof. We know that f(s, δy, δz) := f(s, Ys + δy, Zsσs + δz) − f(s, Ys, Zsσs) satisfies

(AlocLip) with parameters (β, γ, 2λ, r), where β = fy(·, Y, Zσ) and γ = fz(·, Y, Zσ)

satisfy ‖β‖∞,1 ≤ ρ‖r‖2
∞,2 and γ ∈ L2

BMO ; and ν = ν +
∫

2gdN ∈ BMO. We linearize

f like in proposition 3.4.3 : f(s, δy, δz) = βsδy + γsδz + h(s, δy, δz).

Since the difference ∆Y = Y ′′ − Y ′ has the dynamics

d∆Ys = −
[
∆αs + βs∆Ys + γs∆Zsσs + {h(s, δY ′′s , δZ

′′
s σs)− h(s, δY ′, δZ ′sσs)}

]
dCs

− d
〈
ν, (∆N)⊥

〉
s
− gsd

〈
(δN ′′)⊥ + (δN ′)⊥, (∆N)⊥

〉
s
− d∆Ks + d∆Ns ,

doing the usual transformations, with dQ
dP

= E(
∫
γσ−1dM + ν) and B = e

∫ ·
0 βudCu , the

standard computations give, like in (3.4.6),

‖∆̂S‖2
Q ≤ 29∆̂E + 292̂λ

2
(‖r‖2

∞,2 + 2)2
(
‖δ̂S ′′‖2

Q + ‖δ̂S ′‖2
Q

)
‖∆̂S‖2

Q

But δS ′′ and δS ′ are the unique solutions to the perturbation equations (3.4.9)

with data (f + δα′′, ν, g, δξ′′, L) and (f + δα′, ν, g, δξ′, L), and by the way they were

constructed in proposition 3.4.4 (recall that δD′, δD′′ ≤ exp(−‖β‖∞,1) 1
25
R0(2̂λ,r)√

2
) we

know that they satisfy

‖δ̂S ′′‖2
Q, ‖δ̂S ′‖2

Q ≤
R0(2̂λ, r)2

2
, so

‖δ̂S ′′‖2
Q + ‖δ̂S ′‖2

Q ≤ R0(2̂λ, r)2 =
1

2102̂λ
2
(‖r‖2 + 2)2

.

Reinjecting this in the previous estimate we have ‖∆̂S‖2
Q ≤ 29∆̂E + 1

2
‖∆̂S‖2

Q and

therefore

‖∆̂S‖2
Q = ‖∆̂Y ‖2

S∞ + ‖̂̃∆N‖2
BMO(Q) ≤ 210∆̂E .

Then this implies that ‖∆̂Y ‖S∞ ≤ 25∆̂D and so ‖∆Y ‖S∞ ≤ 25e2‖β‖∞,1∆D. For the
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same reason, ‖∆̃N‖BMO(Q) ≤ 25e2‖β‖∞,1∆D. By theorem 3.6 in Kazamaki, ‖∆N‖BMO(P ) ≤
C(Q)‖∆̃N‖BMO(Q) where the constant depends only on Q, or equivalently on the mar-

tingale
∫
γσ−1dM + ν, and in fine on (Y,N).

Note that the interesting part of the above result is the martingale estimate. Indeed,

the estimate for Y ′′ − Y ′ in S∞ actually holds for any size of data (as can be seen by

linearizing the drift, doing a change of measure to get rid of all the terms in N and

solving for Y ). As mentionned in the introduction, we know that (ξ, α) 7→ N is global

Lipschitz in Hp, and 1
2
-Hölder in BMO. The above estimate shows it is in fact locally

Lipschitz in BMO.

3.5 Existence under more general assumptions.

In theorem 3.4.6, the existence of a solution was proved under (Ader), so in partic-

ular under the assumption that f is a Lipschitz function of y, and therefore at most

linear in y. In this section, we extend this result to more general assumptions on f .

To some extent, we would like to replace ρ, ρ′, λ which are constants in (Ader) by

arbitrary growth functions (while of course still assuming that f ends up with a growth

in y compatible with existence of solutions). Looking back at proposition 3.4.4, we see

that when ρ is a growth function, the maximal size ε allowed for a perturbation (ξ2, α2)

of the parameters would depend on the size ‖Y 1‖S∞ of the solution. It is therefore

not clear that one can choose ε0 and the decomposition ξ =
∑n

i=1 ξ
i, α =

∑n
i=1 α

i

uniformly for the perturbation procedure in the proof of theorem 3.4.6, or to put

things differently, that a series of pertubations could terminate in finitely many steps.

This however can be guaranteed if one can obtain an a priori bound for the solutions

to reflected BSDEs with drift (f, ν, g).

Case of a superlinear growth in y.

In the following theorem, we extend theorem 3.4.6 to the case where f can have

slightly-superlinear growth in y.

Theorem 3.5.1. Consider a set of data (f, ν, g, ξ, L) satisfying the assumptions of

theorem 3.4.6, but with ρ, ρ′, λ in (Ader) being growth function instead of constants.

Further assume that |f(t, y, 0)| ≤ |f(t, 0, 0)| + ϕ(y) for a growth function ϕ such that∫ +∞
1

1
ϕ(y)

dy = +∞. Then there exists a solution (Y,N,K) to the reflected BSDE (3.2.1)

with data (f, ν, g, ξ, L).
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Proof. We will apply the perturbation procedure as was done previously when ρ, ρ′, λ

were constants.

First, by the estimate in theorem 1 in Kobylanski et al. [51], we know that there

exists a function F increasing (a growth function) such that for any set of data

(f, ν, g, ξ, L) satisfying the assumptions and for any solution (Y,N,K) we have ‖Y ‖S∞ ≤
F (‖ξ‖∞, ‖α‖∞,1). Now, for a fixed set of data, we define ρmax = ρ

(
F (‖ξ‖∞, ‖α‖∞,1)

)
.

We fix n big enough that

D(n) =
D

n
≤ e−2ρmax‖r‖2∞,2

210
(
2λ(1)

)(
‖r‖2

∞,2 + 2
) = ε0(ρmax, 2λ(1), r) .

We will construct n solutions Si of reflected BSDEs or perturbation equations such

that for each equation, the size of the data is Di = D(n) and the size of the solution

is such that ‖Ŷ i‖S∞ ≤ 1. Note that the ̂ here indicates the multiplication by Bi =

exp
( ∫ ·

0
fy(S

i−1

u )dCu
)
.

We know that we can do a transation to be reduced to the case L ≤ 0 so we assume

from now on that L ≤ 0. Define, for i = 1 . . . n, ξi := ξ(n) = 1
n
ξ and αi := α(n) = 1

n
α

(uniform decomposition of ξ and α).

For i = 1, we first build a solution S1 = (Y 1, N1, K1) to the reflected BSDE (3.2.1)

with parameters (f−α+α1, ν, g, ξ1, L). Proposition 3.4.3 as it is stated doesn’t strictly

apply, but we can adapt the proof. We define the integrating factor B = e
∫
βdC with

β = β
0

= fy(·, 0, 0) ∈ L∞,1 and the new measure Q by dQ
dP

= E(
∫
γσ−1dM + ν) where

γ = γ0 = fz(·, 0, 0) ∈ L2
BMO. Then, like in proposition 3.4.2, we look for a solution

(Ŷ 1,
̂̃
N1, K̂1) to the reflected BSDE with no linear term, via the fixed point theorem.

We look for a solution in a ball of radius R and now further demand that R ≤ 1, so

that the conditions to be met are that

R ≤ R0(2̂λ(1), r) =
1

252̂λ(1)
(
‖r‖2

∞,2 + 2
) and D̂1 =

D̂

n
≤ R0(2̂λ(1), r)

25
= ε0(2̂λ(1), r) ,
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where 2̂λ(1) = e‖β
0‖∞,1(2λ(1)). Now, since we have chosen n such that D

n
≤ e

−2ρmax‖r‖2∞,2

210(2λ(1))
(
‖r‖2∞,2+2

) ,

D̂

n
≤ e‖β

0‖∞,1D

n
≤ e‖β

0‖∞,1e−2ρmax‖r‖2∞,2

210
(
2λ(1)

)(
‖r‖2

∞,2 + 2
) =

e2‖β0‖∞,1e−2ρmax‖r‖2∞,2

2102̂λ(1)
(
‖r‖2

∞,2 + 2
)

≤ 1

2102̂λ(1)
(
‖r‖2

∞,2 + 2
) = ε0(2̂λ(1), r)

because ‖β0

∞,1‖ ≤ ρ(0)‖r‖2
∞,2 and ρ(0) ≤ ρmax by construction. So we indeed get a solu-

tion (Ŷ 1,
̂̃
N1, K̂1) and doing the reverse transforms gives a solution S1 = (Y 1, N1, K1)

to the reflected BSDE with the linear terms.

For i = 2 . . . n, we have a solution S
i−1

to the reflected BSDE (3.2.1) with parameters

(f −α+αi−1, ν, g, ξ
i−1
, L) and want to construct the appropriate perturbation Si. We

simply do the same computations as in proposition 3.4.4, using the integrating factor

B
i−1

= e
∫
β
i−1

dC where β
i−1

= fy(·, Y
i−1
, Z

i−1
σ), and the change of measure dQ

dP
=

E(
∫
γi−1σ−1dC + νi−1) where γi−1 = fz(·, Y

i−1
, Z

i−1
σ) and νi−1 = ν +

∫
2gd(N

i−1
)⊥.

Because we know, by the a priori estimate on solutions of the reflected BSDE, that

‖Y i−1‖S∞ ≤ F

(∥∥∥∥(i− 1)

n
ξ

∥∥∥∥
∞
,

∥∥∥∥(i− 1)

n
α

∥∥∥∥
∞,1

)
≤ F

(
‖ξ‖∞, ‖α‖∞,1

)
,

we know that ‖βi−1‖∞,1 ≤ ρ(‖Y i−1‖S∞)‖r‖2
∞,2 ≤ ρmax‖r‖2

∞,2. Therefore, just as above,

we find that the size D̂i of the data is indeed small enough, and so we can construct

the perturbation Si.

As can be seen from the proof above, the key to the generalization is to have an a

priori estimate ‖Y ‖S∞ ≤ F (‖ξ‖∞, ‖α‖∞,1) for some growth function F .

Case of f monotone and with arbitraty growth in y.

We can also generalize the result of theorem 3.4.6 to the case where f is so-called

monotonous (or 1-sided Lipschitz) in y, with arbitrary growth.

Theorem 3.5.2. Consider a set of parameters (f, ν, g, ξ, L) satisfying the assumptions

of theorem 3.4.6, but with ρ, ρ′, λ in (Ader) being growth function instead of constants.
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Further assume that |f(t, y, 0)| ≤ |f(t, 0, 0)| + ϕ(y) for a growth function ϕ and

that there exists a constant µ such that for all y, y′, z, s, ω,

(y′ − y)
(
f(s, y′, z)− f(s, y, z)

)
≤ µ r2

s |y′ − y|2

Then there exists a solution (Y,N,K) to the reflected BSDE (3.2.1) with parameters

(f, ν, g, ξ, L).

As remarked above, it is enough to have an a priori estimate for ‖Y ‖S∞ . One can

use the one obtained in the proof of theorem 3.1 in [79]. Alternatively, having argued

that it is enough to study the case where the obstacle is negative, one can linearize the

driver in the N variable, and do a measure change. Then, using Itô with | · |2 to take

advantage of the monotonicity condition, one could conclude via standard estimations

that

‖Y ‖2
S∞ ≤ 2e4µ‖r‖2∞,2

(
‖ξ‖2

∞ + 2‖α‖2
∞,1) =: F

(
‖ξ‖∞, ‖α‖∞,1

)2
.

3.6 Technical details : differential calculus lemmas.

In the above presentation of our results (sections 3.2 to 3.5), the focus was kept

strictly on reflected BSDEs. A number of claims were not proven, which involve only

elementary differential calculus. This is because we wanted to keep the proofs clear,

and not make them longer with elementary verifications. We provide the associated

proofs in this section.

3.6.1 Recall of the assumptions

Let us first recall the assumptions that were used. Recall that r is a positive process

in L∞,2.

(Aqg) There exists a growth function λ(·) (i.e. λ : R → R+ symmetric, increasing on

R+, bounded below by 1) and a positive process h ∈ L2
BMO (i.e.

∫
hdM ∈ BMO,

see below) such that :

|f(t, y, z)| ≤ λ(y)
(
h2
t + |z|2

)
.
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(AlocLip) The function f is differentiable at (0, 0) (in (y, z), for all (ω, s) ), and there exist

λ > 0 such that, writing βs = fy(s, 0, 0) and γs = fz(s, 0, 0), one has

– for all ω, s, y1, y2, z1, z2 :

|f(s, y1, z1)− f(s, y2, z2)− βs(y1 − y2)− γs(z1 − z2)|

≤ λ
(
rs|y1|+ rs|y2|+ |z1|+ |z2|

)(
rs|y1 − y2|+ |z1 − z2|

)
,

– γ ∈ L2
BMO and β ∈ L∞,1 (that is :

∫ T
0
|βs|dCs ∈ L∞),

(Ader) f is twice continuously differentiable in the variables (y, z) and there exists

ρ, ρ′, λ > 0, and h ∈ L2
BMO such that

|fy(t, y, z)| ≤ ρr2
t and |fz(t, y, z)| ≤ ρ′(ht + |z|) ,

|fyy(t, y, z)| ≤ λr2
t , |fyz(t, y, z)| ≤ λrt and |fzz(t, y, z)| ≤ λ .

We will refer to these assumptions as (Aqg){λ, h}, (AlocLip){β, γ, λ, r} and finally

(Ader){ρ, ρ′, λ, r, h}. More specifically, the assumptions in (Ader) related to the first

derivative Df and the second derivative D2f are denoted by (ctrldD2){λ, r} and

(ctrldD1){ρ, ρ′, r, h} respectively. In (AlocLip), the regularity estimate on its own will

be referred to as the locLipz{r, λ} estimate.

3.6.2 Lemmas related to those assumptions

In the lemmas below, we gather some facts about the interplay between the differ-

ent assumptions. In particular, how the different transforms which we use affect the

assumptions.

Translations and going from (Ader) to (AlocLip)

We need to consider some translated of f : given Y ∈ S∞ and Z ∈ L2
BMO, we

define

f(t, y, z) = f(t, y + Y, z + Z).

The lemmas below are used in two places. First, when we perturbate an equation and

consider that a difference in drifts is a drift in the delta variables. There, we need to
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consider f(t, y, z) = f(t, y + Y, z + Z) − f(t, y, z) which is as above, plus a constant.

Second, when we do a change of framework of reference, doing a translation by the

constant U .

Lemma 3.6.1 (no change in the growth of the second derivative after translation).

f satisfies (ctrldD2){λ, r} =⇒ f satisfies (ctrldD2){λ, r}

Proof. Quite obvious.

|f yy(t, y, z)| = |fyy(t, y + Yt, z + Zt)| ≤ λ(y + ‖Y ‖∞)r2
t

|f yz(t, y, z)| = |fyz(t, y + Yt, z + Zt)| ≤ λ(y + ‖Y ‖∞)rt

|f zz(t, y, z)| = |fzz(t, y + Yt, z + Zt)| ≤ λ(y + ‖Y ‖∞)

So in case the parameter λ is a growth function, we have the new growth function

λ′(y) = λ(y + ‖Y ‖). Otherwise, we just have the same parameter λ > 0 (and in both

cases, the same r ∈ L2,∞).

Lemma 3.6.2 (change in the growth of the first derivatives after translation).

f satisfies (ctrldD1){ρ, ρ′, r, h} =⇒ f satisfies (ctrldD1){ρ, ρ′, r, h+ Z}

Proof. Same kind of obviousness.

|f y(t, y, z)| = |fy(t, y + Yt, z + Zt)| ≤ ρ(y + ‖Y ‖∞)r2
t

|f z(t, y, z)| = |fz(t, y + Yt, z + Zt)| ≤ ρ′(y + ‖Y ‖∞)
(
ht + |z + Zt|

)
≤ ρ′(..)

([
ht + |Zt|

]
+ |z|

)
and h+ Z ∈ L2

BMO by the assumption on Z.

Combining the two we obtain the following useful lemma.

Lemma 3.6.3 (change in the assumption (Ader) after translation).

f satisfies(Ader){ρ, ρ′, λ, r, h} =⇒ f satisfies (Ader){ρ, ρ′, λ, r, h+ Z}.

Lemma 3.6.4 (how the assumption on the growth of D2f implies the locLipz regu-

larity).

f satisfies (ctrldD2){λ, r} =⇒ f satisfies the (locLipz){2λ, r} estimate.
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Proof. This proof requires computations.

Take w1 = (y1, z1) and w2 = (y2, z2). We want to prove that f(w2) − f(w1) −
Df(0).(w2 − w1) is bounded by the right quantitity. Using Taylor’s formula (with

integral remainder),

f(w2)− f(w1)−Df(0).(w2 − w1)

= f(w2)− f(w1)−Df(w1).(w2 − w1) +
(
Df(w1)−Df(0)

)
.(w2 − w1)

=

∫ 1

0

(1− u)D2f(w1 + u∆w)du.(∆w)⊗2 +

∫ 1

0

D2f(uw1)du.w1.∆w

so taking the modulus, using the assumptions on D2f (with possibly a growth function

λ), then recognizing the development of (a + b)2 and (a + b)(c + d), and noting that

|∆y| ≤ |y1|+ |y2| and |∆z| ≤ |z1|+ |z2|, one sees that

|f(w2)− f(w1)−Df(0).(w2 − w1)|

≤
∫ 1

0

(1− u)|D2f(w1 + u∆w).(∆w)⊗2|du+

∫ 1

0

|D2f(uw1).w1.∆w|du

≤
∫ 1

0

(1− u)λ(|y1 + u∆y|)
[
r2
t |∆y|2 + 2rt|∆y||∆z|+ |∆z|2

]
du

+

∫ 1

0

λ(|y1 + u∆y|)
[
r2
t |y1||∆y|+ rt|y1||∆z|+ rt|z1||∆y|+ |z1||∆z|

]
du

≤ λ(|y1|+ |y2|)
[
r2
t |∆y|2 + 2rt|∆y||∆z|+ |∆z|2

]
+ λ(|y1|+ |y2|)

[
r2
t |y1||∆y|+ rt|y1||∆z|+ rt|z1||∆y|+ |z1||∆z|

]
≤ λ(..)

[
rt|∆y|+ |∆z|

]2

λ(..)
(
rt|∆y|+ |∆z|

)(
rt|y1|+ |z1|

)
≤ λ(..)

(
rt|∆y|+ |∆z|

)(
rt|y1|+ rt|y2|+ |z1|+ |z2|

)
λ(..)

(
rt|∆y|+ |∆z|

)(
rt|y1|+ |z1|

)
≤ 2λ(|y1|+ |y2|)

(
rt|y1|+ rt|y2|+ |z1|+ |z2|

)(
rt|∆y|+ |∆z|

)
,

which is the locLipz estimate required, with λ′ = 2λ if λ is a constant (and r is

unchanged, as usual).

Lemma 3.6.5 (how the assumption on the growth of D1f gives the integrability of β
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and γ).

f satisfies (ctrldD1){ρ, ρ′, r, h} =⇒

{
β = fy(·, 0, 0) ∈ L∞,1 (with ‖β‖∞,1 ≤ ρ‖r‖2

∞,2)

γ = fz(·, 0, 0) ∈ L2
BMO (with ‖γ‖BMO ≤ ρ′‖h‖BMO)

Proof. Quite obvious.

β = fy(·, 0, 0) so |βt| ≤ ρr2
t , and since r ∈ L∞,2, β ∈ L∞,1 with ‖β‖ ≤ ρ‖r‖2

γ = fz(·, 0, 0) so |γt| ≤ ρ′(ht + |0|), and since h ∈ L2
BMO, γ ∈ L2

BMO with ‖γ‖ ≤
ρ′‖h‖

Combining those facts, we obtain the following lemma.

Lemma 3.6.6. f satisfies (Ader){ρ, ρ′, λ, r, h} =⇒ f satisfies (AlocLip){β, γ, 2λ, r}.
Here, of course, βt = f y(t, 0, 0) = fy(t, Yt, Zt) and γt = f z(t, 0, 0) = fz(t, Yt, Zt), so

that

‖β‖∞,1 ≤ ρ‖r‖2
∞,2

‖γ‖L2
BMO
≤ ρ′‖h+ Z‖L2

BMO

Proof. First, note that if a given f satisfies (Ader){ρ, ρ′, λ, r, h}, then by lemma 3.6.4

and 3.6.5, one can say that f satisfies (AlocLip){β, γ, 2λ, r}.
Now, by lemma 3.6.3, since f satisfies (Ader){ρ, ρ′, λ, r, h}, so does f but with

parameters {ρ, ρ′, λ, r, h+Z}. And by the point above, f satisfies (AlocLip){β, γ, 2λ, r},
and ‖β‖∞,1 ≤ ρ‖r‖2

∞,2 and ‖γ‖L2
BMO
≤ ρ′‖h+ Z‖L2

BMO
.

Linearization : removal of linear terms

One can always remove the linear terms in f by looking at h defined by

f(t, y, z) = βt.y + γt.z + h(t, y, z).

Here, h includes the residual drift α = f(·, 0, 0).

Lemma 3.6.7. f satisfies (AlocLip){β, γ, λ, r} =⇒ h satisfies (AlocLip){β = 0, γ =

0, λ, r}
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Proof.

|h(y′, z′)− h(y, z)− 0− 0| = |f(y′, z′)− f(y, z)− β(y′ − y)− γ(z′ − z)|

≤ λ
(
r|y|+ r|y′|+ |z|+ |z′|

)(
r|∆y|+ |∆z|

)

f̂ : scalings

Let B be a strictly positive process, bounded away from 0 and +∞. We define

f̂(t, y, z) = Btf(t, B−1
t y,B−1

t z)

Lemma 3.6.8. f satisfies (AlocLip){β, γ, λ, r} =⇒ f̂ satisfies (AlocLip){β, γ, λ̂, r}
Here,

λ̂ = ‖B−1‖∞λ

Note that in practice, B = exp(
∫ ·

0
βdu) so if β ∈ L∞,1 then ‖B‖∞, ‖B−1‖∞ ≤

e‖β‖∞,1.

Proof. One computes

|f̂(y′, z′)− f̂(y, z)− β(y′ − y)− γ(z′ − z)|

= B|f(B−1y′, B−1z′)− f(B−1y,B−1z)− β(B−1y′ −B−1y)− γ(B−1z′ −B−1z)|

≤ Bλ
(
r|B−1y|+ r|B−1y′|+ |B−1z|+ |B−1z′|

)(
r|∆B−1y|+ |∆B−1z|

)
= BB−1B−1λ

(
r|y|+ r|y′|+ |z|+ |z′|

)(
r|∆y|+ |∆z|

)
≤ ‖B−1‖λ

(
r|y|+ r|y′|+ |z|+ |z′|

)(
r|∆y|+ |∆z|

)

So setting λ̂ = ‖B−1‖∞λ indeed shows that f̂ is (locLipz){β, γ, λ̂, r}

Note : we need to have this lemma, and then as a rigour-protection it needs to

have a proof, which is not much informative. What really happens behind this is

quite clear though. When we do a scaling, the term f(t, y, z) is multiplied by B (and
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becomes Bf(t, y, z) = Bf(t, B−1ŷ, B−1ẑ)). The coefficients β, γ of the linear terms

are unchanged in the scaling, while the coefficient λ of the quadratic term is inversely

scaled.

Verifying that we are always under (Aqg)

It is clear that if f satisfies (Ader), the bounds on the first derivative imply that

f has at most quadratic growth in z (and at most linear growth in y, if ρ and ρ′ are

constants).

Lemma 3.6.9 (from (ctrldD1) to (Aqg)).

{
f satisfies (ctrldD1){ρ, ρ′, r, h}

α = f(·, 0, 0) is in L1
BMO

=⇒ f satisfies (Aqg){λ′, h′}

Proof. Again a straight-forward estimation. Using Taylor’s formula we get

f(y, z) = f(0, 0) +

∫ 1

0

Df(uy, uz)du.(y, z)

= f(0, 0) +

∫ 1

0

fy(uy, uz)du.y +

∫ 1

0

fz(uy, uz)du.z

so

|f(t, y, z)| ≤ |f(t, 0, 0)|+
∫ 1

0

ρ(u|y|)r2
t du|y|+

∫ 1

0

ρ′(u|y|)(ht + |uz|)du|z|

≤ |α|+ ρ(y)r2
t |y|+ ρ′(y)(ht + |z|)|z|

≤ |α|+ ρ(y)r2
t |y|+

1

2
ρ′(y)h2

t +
3

2
ρ′(y)|z|2

≤
(

1 + ρ(y)|y|+ 1

2
ρ′(y) +

3

2
ρ′(y)

)(
|α|+ r2

t + h2
t + |z|2

)
Now, α ∈ L1

BMO, r2 ∈ L∞,1 ⊆ L1
BMO and h2 ∈ L1

BMO, so we see that f satisfies

(atmostquad){λ′, h′} where

(h′t)
2 = |αt|+ r2

t + h2
t

λ′(y) = 1 + ρ(y)|y|+ 1

2
ρ′(y) +

3

2
ρ′(y)
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Now, we also need to check that the (AlocLip) assumption, which is a by-product

of (Ader) but used on its own from time to time, also implies (Aqg). This ultimately

means that we are just using the second derivative to check that f satisfies (Aqg).

Lemma 3.6.10 (from (AlocLip) to (Aqg)).{
f satisfies (AlocLip){β, γ, λ, r}

α = f(·, 0, 0) is L1
BMO

=⇒ f satisfies (Aqg){λ′(y), h}

Proof. Simply estimate, using the locLipz regularity :

|f(t, y, z)| ≤ |f(t, 0, 0)|+ |β||y|+ |γ||z|+ λ
(
rt|y|+ |z|

)2

≤ |α|+ |β||y|+ 1

2
|γ|2 +

1

2
|z|2 + 2λr2|y|2 + 2λ|z|2

≤
(
1 + |y|+ 2λ|y|2 + 2λ

)(
|α|+ |β|+ |γ|2 + r2

t + |z|2
)
.

Now, note that |α| ∈ L1
BMO, |β| ∈ L∞,1 ⊆ L1

BMO, |γ|2 ∈ L1
BMO and r2 ∈ L∞,1 ⊆ L1

BMO.

So defining

h2
t = |αt|+ |βt|+ |γt|2 + r2

t

λ′(y) = 1 + |y|+ 2λ|y|2 + 2λ

we see that h ∈ L2
BMO and λ′ is a growth function (λ can equally well be a growth

function).
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Chapter 4

Analysis of the time-discretization

for FBSDEs with monotone drivers

with polynomial growth.

4.1 Introduction.

4.1.1 Motivation.

We now return to our core subject, recentering the discussion on the relationship

between parabolic PDEs and standard BSDEs. However we investigate this relation-

ship under a different angle, and this chapter will be concerned with the numerical

aspects of BSDEs.

In the previous chapter, aside from the fact that we considered reflected BSDEs

and not merely standard BSDEs, we discussed backward stochastic problems set in

a very general setting. The reason for this was that such a generality, at least in

its formalism, allows to cover at once several types of PDE problems. We now come

back to the standard set-up of Markovian (F)BSDEs in a Brownian setting. On the

analytical aspects however, we will retain the monotonicity condition encountered in

the previous chapter.

It is an important task to develop methods for solving BSDEs numerically.

The connection between PDEs and BSDEs always holds at least formally. For this

reason, FBSDEs can be thought of as a different language to study the same thing
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: PDEs. There is then a one-to-one correspondence between the analytical results on

PDEs on one side and FBSDEs on the other side. Every result proved on the BSDE side

might, in principle, be proved equally on the PDE side with pure PDE methods. There

is however a more important justification for continuing the intense effort currently

directed toward BSDEs.

Through BSDEs, one obtains new numerical methods for solving PDEs. On the

long term, even if they eventually do not turn out to be much faster than the numerical

methods for PDEs, BSDE-based methods are usually of Monte-Carlo type and as such

they are immune to, or less subject to the curse of dimensionality. They would therefore

be the only tool available for some problems. This make it important to understand

better and develop further the numerical methods for BSDEs, a research sub-area

which is still relatively young.

So far, the major part of the research on numerical methods for BSDEs has focused

on the analysis of time discretization error, and did so for the cases of nonlinearities

that are either Lipschitz or quadratic in the secondary variable Z. The aim of the

research we present in this chapter is to understand how to handle the time discretiza-

tion for BSDEs in the case where the nonlinearity coefficient is monotone and can

have polynomial growth in the primary variable Y . More precisely, we aim primarily

at understanding what happens to the usual backward Euler scheme, proving that it

converges if indeed it does, and proposing an alternative scheme when it does not.

This monotonicity assumption is relevant for PDEs describing reaction-diffusion

phenomena. Indeed, in many such equations, the function f is a polynomial (in v), for

example the Allen-Cahn equation, the FitzHugh-Nagumo equations (with or without

recovery) or the standard non-linear heat and Schrödinger equation (see [38], [74], [32],

[52] and references).

The applicability of the results we develop here is not restricted to the modeling of

physical phenomena. It is also possible to extend the work we develop to the Brownian-

Lévy setting and apply it for instance to problems of contingent claim hedging in

defaultable markets, see e.g. instance [36].
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4.1.2 Introduction to the numerical methods for BSDEs.

Before moving on to presenting the research done for this project, let us take the

time to present briefly the numerical methods for BSDEs.

Consider a Markovian forward-backward SDE

Xr,x
t = x+

∫ t

r

b(s,Xr,x
s )ds+

∫ t

r

σ(s,Xr,x
s )dWs , (4.1.1)

Y r,x
t = g(Xr,x

T ) +

∫ T

t

f(u,Xr,x
u , Y r,x

u , Zr,x
t )du−

∫ T

t

Zr,x
u dWu , (4.1.2)

for a given (r, x) ∈ [0, T ]× Rd, and r ≤ t ≤ T . We know that this is connected to the

PDE

vt + vxx · a+ vx b+ f(t, x, u, uxσ) = 0 on [0, T [×Rd,

v(T, ·) = g ,

where a = σσ∗, vxx · a =
∑d

i,j=1 vijaij and vx b =
∑d

i=1 vibi. The link is that Y r,x
t =

v(t,Xr,x
t ) and Zr,x

t = (vxσ)(t,Xr,x
t ).

Not knowing how to solve explicity the FBSDE (4.1.1)-(4.1.2) for a general nonlin-

ear f , we would like to obtain a numerically computable approximation of the solution.

Time-discretization.

Let us drop the superscript r, x for the moment, and focus on the approximation

of the solution (Xt, Yt, Zt)t∈[0,T ]. The forward equation (4.1.1) is not coupled to the

backward equation (4.1.2), so it can be solved first.

Let us a consider a partition π : 0 = t0 < t1 < . . . < tN = T of [0, T ]. One can easily

obtain an approximation (Xi)i=0...N for the SDE solution (Xt)t∈[0,T ]. For instance, with

the simple Euler scheme (known as Euler-Maruyama scheme in the context of SDEs),

we would define X0 = x and then, for i = 1 . . . N ,

Xi+1 = Xi + b(ti, Xi)hi+1 + σ(ti, Xi)∆Wi+1 .

Here hi+1 = ti+1 − ti and ∆Wi+1 = Wti+1
−Wti . Existing results for the numerical

approximation of SDE solutions ensure, under various conditions, that a whole range
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of schemes converge, that is to say, (Xi) become a good approximation for (Xt), in

some sense, when the modulus |π| = maxi|hi| of the partition goes to 0 (see Kloeden

and Platen [49]).

So one can consider this part of the problem solved, assume we have already com-

puted an approximation (Xi) of the solution to the SDE, and focus on the approxi-

mation of the BSDE.

How do we discretize the BSDE ? Let us look at the BSDE (4.1.2) between ti and

ti+1 :

Yti = Yti+1
+

∫ ti+1

ti

f(t,Xt, Yt, Zt)dt−
∫ ti+1

ti

ZtdWt

= E

(
Yti+1

+

∫ ti+1

ti

f(t,Xt, Yt, Zt)dt

∣∣∣∣Fti)
To define an approximation Yi of Yti , one may want to simply approximate the

integrals by increments. For instance, if we used a right-end rectangle rule for the

integrals, we would define

Yi = Yi+1 + f(ti, Xi+1, Yi+1, Zi+1)hi+1 − Zi+1∆Wi+1 ,

Having already computed (Yi+1, Zi+1), this Yi is readily computable. However, just like

for solutions to BSDEs, we want Yi to be adapted. Thinking of the connection with

PDEs, this Yi that we define would be an approximation of v(ti, Xti), so it should not

depend on the paths of the Brownian motion after ti. Taking the conditional expection

E
(
·
∣∣Fi), where Fi = σ(Xj, j ≤ i), we obtain

Yi := E
(
Yi+1 + f(ti, Xi+1, Yi+1, Zi+1)hi+1

∣∣∣Fi) ,
and this will be our Yi. Now, we also need to approximate Zti . Various heuristics can be

used to obtain such an approximation. For instance, one could think that Z = 〈Y,W 〉 in

continuous time. So, taking the discrete time equivalent, we could think of multiplying

the discrete dynamics equation

Yti ≈ Yi+1 + f(ti, Xti+1
, Yti+1

, Zti+1
)hi+1 − Zti∆Wi+1 ,
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(note that we use Zti here and not Zti+1
) by ∆Wi+1, and take the condition expectation.

Using the martingale property, we end up obtaining the following candidate for Zi :

Zi := E

((
Yi+1 + f(ti, Xi+1, Yi+1, Zi+1)hi+1

)∆Wi+1

hi+1

∣∣∣∣Fi) ,

In fact, interpreting more strictly
∫ ti+1

ti
Ztdt =

∫ ti+1

ti
d 〈Y,W 〉t, we could in fact propose

Zi := E

(
Yi+1

∆Wi+1

hi+1

∣∣∣∣Fi) ,

which also works.

Summarizing, the above heuristics lead to considering, for instance, the following

scheme. Define YN = g(XN), ZN = 0 and then, for i = N − 1 . . . 0,

Yi = E
(
Yi+1 + f(ti, Xi+1, Yi+1, Zi+1)hi+1

∣∣∣Fi)
Zi = E

(
Yi+1

∆Wi+1

hi+1

∣∣∣∣Fi).
This is the (explicit) backward Euler scheme for BSDEs. It can be called in the BSDE

context the Bouchard-Touzi-Zhang scheme (see Crisan and Manolarakis [21]). A num-

ber of results ensure that, under standard conditions on f and g, this scheme converges,

that is to say (Yi, Zi) becomes a good approximation for (Y, Z) in some sense, as the

modulus (or mesh) of the subdivision π goes to 0.

Approximation of the conditional expectations.

However, these random variables Yi and Zi are not yet computable, since they are

defined using a conditional expectation. One needs to also approximate these in order

to obtain a fully implementable scheme.

While the research presented in this chapter is not concerned with this question,

let us mention briefly what those methods are. The quantization method consists in

discretizing the space of values that X and Y can take, so that the conditional expec-

tations can be computed with finitely many conditional probabilities. The latter are

in general computed by Monte Carlo methods. The projection on a basis of functions

is based on the vision of a conditional expectation as a projection on a certain sub-

space of L2. One can also make use of the Malliavin derivatives. Finally, the cubature
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method was recently introduced in this context of BSDEs. This method approximate

the law of the forward process and then compute expectations as integrals against

this approximated law. We refer the reader to the review paper [21] by Crisan and

Manolarakis for more details about these four methods.

4.1.3 Review of the literature.

While some attempts have been made before (see Crisan and Manolarakis [21] for

those early references), the study of the convergence of numerical schemes for BSDEs

really took off after the fundamental works of Zhang and Ma ([81, 58, 57]). They

obtained in particular the path-regularity theorem for Lipschitz BSDEs, which says

that the trajectories of Z are continuous in some L2 sense. This result is crucial in

order to prove the convergence of the scheme if one wants to allow f to depend also

on Z.

Following this, Zhang [82] and then Bouchard and Touzi [7] proposed the backward

Euler scheme (time-discretization) for BSDEs and were able to prove its convergence

for Lipschitz BSDEs. Higher-order discretization schemes have also been proposed

(Crisan and Manolarakis [22], Chassagneux and Crisan [18], Chassagneux [17]).

In addition to the study of the convergence of the time-discretization, some works

have studied the error created by the approximation of the conditional expectations

(see Gobet and Turkedjiev [35] and references therein).

The above mentioned works all study the case of Lipschitz coefficient f . For f

quadratic in z, the path-regularity theorem was obtained by Imkeller and dos Reis

[46] and Richou [72]. In these papers, the essential idea to approximate numerically

the solution was to truncate the quadratic BSDEs to a Lipschitz one, controlling the

distance between the true solution and the solution to the truncated BSDE, and then

apply a standard time-discretization to approximate the solution to the truncated

(Lipschitz) BSDE. Very recently, Chassagneux and Richou [19] have proposed a more

direct procedure.

The work presented in this chapter tackles the time-discretization of BSDEs with

a monotone driver which can have polynomial growth in the y variable.
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4.1.4 Overview of the content of this chapter.

We look further at the connection between parabolic PDEs and FBSDEs with

monotone drivers f of polynomial growth, which has been studied in Pardoux [64],

Briand and Carmona [8] and Briand, Delyon, Hu, Pardoux and Stoica [11]. By mono-

tonicity we mean (see section 4.2) that 〈v′−v, f(v′)−f(v)〉 ≤ µ|v′−v|2, for some µ ≥ 0,

and any v, v′ (one can also find the terminology that f is 1-sided Lipschitz). We extend

the three works mentioned above on the theoretical side by providing further results

for the FBSDE in question (classical and Malliavin differentiability, representation

formula, path-regularity theorem).

Then, we proceed to a thorough analysis of various numerical methods that open

the door to Monte Carlo methods for solving numerically the corresponding PDEs.

Before presenting our results on the time-discretization, let us illustrate with an

example why the explicit Euler scheme can explode under this type of assumption on

f .

Consider the following simple example (for further details and notational setup see

Section 4.2 and Section 4.7.1)

Yt = ξ −
∫ 1

t

Y 3
s ds−

∫ 1

t

ZsdWs, t ∈ [0, 1] (4.1.3)

with the terminal condition ξ ∈ F1. For any ξ ∈ Lp for p ≥ 2 there exists a (square-

integrable) solution (Y, Z) to the above BSDE.

Fix the number of time-discretization points to be N + 1 > 0. The explicit Euler

scheme for the above equation with uniform time step h = 1/N is, with the notation

Yi := Yi/N , given by

Yi = E[Yi+1 − Y 3
i+1h|Fi] = E[Yi+1(1− hY 2

i+1)|Fi], i = 0, . . . , N − 1, (4.1.4)

where YN = ξ.

It is a simple calculation (see Section 4.7.1 for the details) to show that if

ξ ≥ 2
√
N then |Yi| ≥ 22N−i

√
N for i = 0, . . . , N − 1. (4.1.5)

With this simple computation in mind it is possible to show that there exists a
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random variable ξ whose moments of any order are finite and for which the explicit

Euler scheme diverges. The proof of the following result can be found in Section 4.7.1.

Lemma 4.1.1. Let πN be the uniform grid over the interval [0, 1] with N + 1 points,

N an even number (t = 1/2 is common to all grids πN). For any ξ ∈ Lp(F1), for

p ≥ 1, let (Y, Z) denote the solution to (4.1.3).

Then there exists a random variable ξ such that

lim
N→∞

E[ |Y (N)
1
2

| ] = +∞,

where Y
(N)
1
2

is the Euler approximation of Y on the time point t = 1/2 via (4.1.4) over

the grids πN .

The special random variable ξ we work with is normally distributed and it is

known that P[|ξ| > 2
√
N ] is exponentially small (see Lemma 4.7.1). What our counter-

example shows is that although ξ may take very large values on an event with expo-

nentially small probability, the impact of these very large values when propagated

through the Euler explicit scheme is doubly-exponential (see (4.1.5)).

This double-exponential impact is precisely a consequence of the superlinearity of

the driver. In general, the terminal condition ξ is an unbounded random variable (RV)

so there is a positive probability of the scenario where ξ ≥ 2
√
N no matter how small

a time-step we choose. This indicates that, in general, the explicit Euler scheme may

diverge, as it happens in SDE context [43]. Therefore one needs to seek alternative

(for example implicit) approximations for BSDE with polynomial drivers that are also

monotone and/or find conditions under which it is possible for the explicit scheme to

work, as explicit schemes have certain computational advantages over implicit ones.

Our contribution on the practical side, concerning the convergence or not of the

time-discretization is the following.

We extend the canonical Zhang path regularity theorem (see Ma and Zhang [57],

[46]), originally proved under Lipschitz assumptions, to our polynomial growth mono-

tone driver setting

For our non-Lipschitz setting we provide a thorough analysis of the family of θ-

schemes, where θ ∈ [0, 1] characterizes the degree of implicitness of the scheme. Con-

trary to the FBSDEs with Lipschitz drivers, we show that choosing θ ≥ 1/2 is essential

to ensure the stability of the scheme, in a similar way to the SDE context (see Mao

92



and Szpruch [59]). This is to our knowledge the first result in the numerical BSDEs

literature that shows a superior stability of the implicit scheme over the standard ex-

plicit one. We also generalize the concept of stability for discretization schemes (see

that in Chassagneux [16, 17]). This, among others things, paves a way for deriving

higher order approximations schemes for FBSDEs with non-Lipschitz drivers. As an

example, we prove a higher order of convergence for the trapezoidal scheme (the case

θ = 1/2).

We construct an appropriately tamed version of the explicit Euler scheme for which

the required stability property can be recovered. This allows to obtain convergence of

the scheme. Interestingly enough in the special case where the driver of the FBSDEs

does not depend on the SDE solution it is enough to appropriately tame the terminal

condition, leaving the rest of the Euler approximation unchanged.

As a rule of thumb, implicit schemes tend to be more robust than explicit ones.

Unfortunately implicit schemes involve solving an implicit equation, which creates an

extra layer of complexity when compared to explicit schemes. A secondary aim of this

work is to distinguish under which conditions explicit and implicit schemes can be

used.

As standard in numerical analysis, we derive the global error estimates of various

numerical schemes by analyzing their one-step errors and stability properties (which al-

lows to study how errors propagate with time). We formulate the Fundamental Lemma

(following the nomenclature from Milstein [61]) that states how to estimate the global

error of a stable approximation scheme in terms of its local errors. The lemma is

proved under minimal assumptions. We stress that a similar approach has been used

in Chassagneux and Crisan [18], Chassagneux [16, 17], however their results are not

sufficiently general to deal with non-Lipschitz drivers.

The structure of the global error estimate given by the Fundamental Lemma allows

to study in a very easy and transparent way the special case of the θ-scheme with

θ = 1/2 (trapezoidal rule) which has a higher order of convergence. In this context we

also conjecture a candidate for the 2nd order scheme.

Concerning the implementation of the presented schemes we propose an alternative

estimator of the component Z whose standard deviation, contrary to usual estimator,

does not explode as the time step vanishes.

Finally, in proving convergence for the mostly-implicit schemes, we prove Lp-type

uniform bounds for the scheme, extending the classical L2-bound obtained previously
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for the discretization of Lipschitz FBSDEs (see Bouchard and Touzi [7] or Gobet and

Turkedjiev [35]).

In Section 4.2 we define notation and recall standard results from the literature

that we use in this chapter. In Section 4.3 we establish first order variational results

for the solution of the FBSDEs as well as stating the path regularity results required

for the study of numerical schemes within the FBSDE framework. In the remaining

sections we discuss several numerical schemes: in Section 4.4 we define the numerical

discretization procedure and state general estimates for integrability and on the local

errors. In Section 4.5 we establish the convergence of the implicit dominating schemes

and in Section 4.6 the convergence of the tamed fully explicit scheme.

4.2 Preliminaries

4.2.1 Notation

Throughout let us fix T > 0. We work on a canonical Wiener space (Ω,F ,P)

carrying a d-dimensional Wiener process W = (W 1, · · · ,W d) restricted to the time

interval [0, T ]. We denote by F = (Ft)t∈[0,T ] its natural filtration enlarged in the

usual way by the P-zero sets and by E and E[·|Ft] = Et[·] the usual expectation and

conditional expectation operator respectively.

For vectors x = (x1, · · · , xd) in the Euclidean space Rd we denote by | · | and

〈, 〉 the canonical Euclidean norm and inner product (respectively) while ‖·‖ is the

matrix norm in Rk×d (when no ambiguity arises we use | · | as ‖·‖); for A ∈ Rk×d A∗

denotes the transpose of A; Id denotes the d-dimensional identity matrix. For a map

b : Rm → Rd, we denote by ∇b its Rd×m-valued Jacobian matrix (gradient in case

d = 1) whenever it exists. To denote the j-th first derivative of b(x) for x ∈ Rm we

write ∇xjb (valued in Rd×1). For b(x, y) : Rm × Rd → Rk we write ∇xh or ∇yh to

refer to its Jacobian matrix (gradient if k = 1) with relation to x and y respectively.

∆ denotes the canonical Laplacian operator.

We define the following spaces for p > 1, q ≥ 1, n,m, d, k ∈ N

• C0,n([0, T ]×Rd,Rk) is the space of continuous functions endowed with the ‖·‖∞-

norm that are n-times continuously differentiable in the spatial variable ; C0,n
b
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contains all bounded functions of C0,n; the first superscript 0 is dropped for

functions independent of time;

• Lp(Ft,Rd), t ∈ [0, T ], is the space of d-dimensional Ft-measurable RVs X with

norm ‖X‖Lp = E[ |X|p]1/p < ∞; L∞ refers to the subset of essentially bounded

RVs;

• Sp([0, T ]×Rd) is the space of d-dimensional measurable F -adapted processes Y

satisfying ‖Y ‖Sp = E[supt∈[0,T ] |Yt|p]1/p < ∞; S∞ refers to the subset of Sp(Rd)

of absolutely uniformly bounded processes;

• Hp([0, T ]×Rn×d) is the space of d-dimensional measurable F -adapted processes

Z satisfying ‖Z‖Hp = E[
(∫ T

0
|Zs|2ds

)p/2
]1/p <∞;

• Dk,p(Rd) and Lk,d(Rd) are the spaces of Malliavin differentiable RVs and pro-

cesses, see Section 4.7.2.

4.2.2 Setting

We want to study the forward-backward SDE system with dynamics (4.1.1)-(4.1.2),

for (t, x) ∈ [0, T ]× Rd and Θt,x := (X t,x, Y t,x, Zt,x). Here we work, for s ∈ [t, T ], with

the filtration F ts := σ (Wr −Wt : r ∈ [t, s]), completed with the P-Null measure sets

of F . Concerning the functions appearing in (4.1.1) and (4.1.2) we will work with the

following assumptions.

(HX0) b : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → Rd×d are 1/2-Hölder continuous in

their time variable, are Lipschitz continuous in their spatial variables, satisfy

‖b(·, 0)‖∞+ ‖σ(·, 0)‖∞ <∞ and hence satisfy |b(·, x)|+ |σ(·, x)| ≤ K(1 + |x|) for

some K > 0.

(HY0) g : Rd → Rk is a Lipschitz function of linear growth; f : [0, T ] × Rd × Rk ×
Rk×d → Rk is a continuous function such that for some L,Lx, Ly, Lz > 0 for all

t, t′, x, x′, y, y′, z, z′

|f(t, x, y, z)| ≤ L+ Lx|x|+ Ly|y|m + Lz‖z‖, m ≥ 1,

〈y′ − y, f(t, x, y′, z)− f(t, x, y, z)〉 ≤ Ly|y′ − y|2, (4.2.1)

|f(t, x, y, z)− f(t′, x′, y, z′)| ≤ Lt|t− t′|
1
2 + Lx|x− x′|+ Lz‖z − z′‖.
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(HY0loc) (HY0) holds and, given Ly it holds for all t, x, y, y′, z that

|f(t, x, y, z)− f(t, x, y′, z)| ≤ Ly(1 + |y|m−1 + |y′|m−1)|y − y′|, m ≥ 1. (4.2.2)

(HXY1) (HX0), (HY0loc) hold; g ∈ C1 and b, σ, f ∈ C0,1.

We state in the next remark some useful consequences of the monotonicity condition

(4.2.1).

Remark 4.2.1. Under Assumption (HY0), for all t, x, y, y′, z, z′ and any α > 0 we

have

〈y′ − y, f(t, x, y′, z′)− f(t, x, y, z)〉

= 〈y′ − y, f(t, x, y′, z′)− f(t, x, y, z′)〉+ 〈y′ − y, f(t, x, y, z′)− f(t, x, y, z)〉

≤ Ly|y′ − y|2 + Lz|y′ − y||z′ − z|

≤ (Ly + α)|y′ − y|2 +
L2
z

4α
|z′ − z|2.

Moreover

〈y, f(t, x, y, z)〉 = 〈y − 0, f(t, x, y, z)− f(t, x, 0, z)〉+ 〈y, f(t, x, 0, z)〉

≤ Ly|y|2 + |y|
(
L+ Lx|x|+ Lz|z|

)
≤ (Ly + α)|y|2 +

3L2

4α
+

3L2
x

4α
|x|2 +

3L2
z

4α
|z|2. (4.2.3)

4.2.3 Basic results

In this subsection we recall several auxiliary results concerning the solution of

(4.1.1)-(4.1.2) that will become useful later. These results follows from [64] and [8].

Theorem 4.2.2 (Existence and uniqueness). Let (HX0) and (HY0) hold. Then FB-

SDE (4.1.1)-(4.1.2) has a unique solution (X, Y, Z) ∈ Sp × Sp × Hp for any p ≥ 2.

Moreover, it holds for some constant Cp > 0 that

‖Y ‖pSp + ‖Z‖pHp ≤ Cp
{
‖g(XT )‖pLp + ‖f(·, X·, 0, 0)‖pHp

}
≤ Cp(1 + |x|p). (4.2.4)

Proof. The existence and uniqueness results for SDE (4.1.1) follow from standard SDE

literature. The existence and uniqueness result for the BSDE follows from Proposition
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2.2 in [64], since the SDE results imply that X ∈ Sp for any p ≥ 2, along with linear

growth in x of g and f . The estimates for Y ∈ Sp for any p ≥ 2 and Z ∈ Hp follow

from the pathwise inequality

|Yt|2 +
(
1− 3L2

z

2α

)
Et
[∫ T

t

|Zu|2du

]
≤ Cα,T,tEt

[
|g(XT )|2 +

∫ T

t

3

4α
|f(u,Xu, 0, 0)|2du

]
,

(4.2.5)

where Cα,T,t = exp{2(Ly + α)(T − t)}, for any α > 0 and t ∈ [0, T ]. This last inequality

follows from the proof of Proposition 2.2 and Exercise 2.3 in [64], (see also Theorem

3.6 in [8]).

We now state a result concerning a priori estimates for BSDEs.

Theorem 4.2.3 (A priori estimate). Let p ≥ 2 and for i ∈ {1, 2}, let Θi = (X i, Y i, Zi)

be the solution of FBSDE (4.1.1)-(4.1.2) with functions bi, σi, gi, f i satisfying (HX0)-

(HY0). Then there exists Cp > 0 depending only on p and the constants in the as-

sumptions such that for i ∈ {1, 2}

‖Y 1 − Y 2‖pSp + ‖Z1 − Z2‖pHp (4.2.6)

≤ Cp

{
E
[
|g1(X1

T )− g2(X2
T )|p +

(∫ T

0

|f 1(s,X1
s , Y

i
s , Z

i
s)− f 2(s,X2

s , Y
i
s , Z

i
s)|ds

)p]}
.

Proof. See Proposition 3.2 and Corollary 3.3 in [8].

Corollary 4.2.4 (Markov property and sample path continuity). The mapping (t, x) 7→
Y t,x
t (ω) is continuous. There exist two B([0, T ])⊗B(Rk) and B([0, T ])⊗B(Rk×d) mea-

surable deterministic functions u and v (respectively) s.th.

Y t,x
s = u(s,X t,x

s ) s ∈ [t, T ], dP− a.s. (4.2.7)

Zt,x
s = v(s,X t,x

s )σ(s,X t,x
s ) s ∈ [t, T ], dP× ds− a.s.

Moreover, the Markov property holds Y t,x
t+h = Y

t+h,Xt,x
t+h

t+h for any h ≥ 0 and u ∈
C0,0([0, T ]× Rk).

Proof. See Section 3 in [64]. The sample path continuity of Y t,x
t follows from the

mean-square continuity of (Y t,x
s )s∈[t,T ] for x ∈ Rk, 0 ≤ t ≤ s ≤ T , which in turn

follows from inequality (4.2.6). combined with the Lipschitz property of x 7→ g(x) and
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(t, x) 7→ f(t, x, ·, ·) along with the continuity properties of (t, x) 7→ X t,x
· solution to

(4.1.1).

The Markov property follows from Remark 3.1 [64] and the continuity of u(t, x) is

implied by that of Y t,x
t .

4.2.4 Non-linear Feynman–Kac formula

As pointed out in the introduction, our aim is to deepen the connection between

FBSDEs and PDEs via the so called non-linear Feynman–Kac formula, i.e. we study

the probabilistic representation of the solution to a class of parabolic PDEs on Rk

with polynomial growth coefficients that are associated with FBSDE (4.1.1)-(4.1.2).

For (t, x) ∈ [0, T ]×Rd, denote by L the infinitesimal generator of the Markov process

X t,x solution to (4.1.1)

L :=
1

2

d∑
i,j=1

([σσ∗]ij)(t, x)∂2
xixj

+
d∑
i=1

bi(t, x)∂xi , (4.2.8)

and consider for a function v = (v1, · · · , vk) the following system of backward semi-

linear parabolic PDEs for i ∈ {1, · · · , k}

−∂tvi(t, x)− Lvi(t, x)− fi
(
t, x, v(t, x), (∇vσ)(t, x)

)
= 0, v(T, x) = g(x). (4.2.9)

In rough it can be easily proved using Itô’s formula that if v ∈ C1,2([0, T ] × Rd;Rk)

solves the above PDE then Yt := v(t,Xt) and Zt := (∇v σ)(t,Xt) solves BSDE (4.1.2)

(see Proposition 3.1 in [64]). But the more interesting result is the converse one, i.e.

that u(t, x) := Y t,x
t is the solution of the PDE (in some sense). It was established in

Theorem 3.2 of [64] (recalled next) that indeed (t, x) 7→ Y t,x
t is the viscosity solution

of the PDE.

Theorem 4.2.5. Let (HX0), (HY0) hold and take (t, x) ∈ [0, T ] × Rd. Furthermore,

assume that the i-th component of the driver function f depends only on the i-th row

of the matrix z ∈ Rk×d, i.e. fi(t, x, y, z) = fi(t, x, y, z
i).

Then u(t, x) := Y t,x
t is a continuous function of (t, x) that grows at most polyno-

mially at infinity and is a viscosity solution of (4.2.9) (in the sense of Definition 3.2

in [64]).

Remark 4.2.6 (Multi-dimensional case). The proof of Theorem 4.2.5 relies on a BSDE
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comparison theorem that holds only in the case k = 1 (i.e. when Y is one-dimensional).

Nonetheless, with the restriction imposed by (HY0), it is still possible to use the said

comparison theorem to prove Theorem 4.2.5, we point the reader to Theorem 2.4 and

Remark 2.5 in [64].

It is possible to show that (t, x) 7→ Y t,x
t is the solution to (4.2.9) not only in the

viscosity sense, but also in weak sense (in weighted Sobolev spaces), this has been done

in [60] and [83].

One equation covered by our setting is the FitzHugh-Nagumo PDE with recovery,

usually used in biology to model the electrical distribution of the heart.

Example 4.2.7 (The FH-N equation with recovery). Let (t, x) ∈ [0, T ] × Rd, g =

(gu, gv), f = (fu, fv) and g, f, (u, v) : [0, T ]×Rd → R2. The FH-N PDE has a dynamics

of the type

− ∂tu−∆u− fu(u, v) = 0, −∂tv −∆v − fv(u, v) = 0,

with u(T, ·) = gu(·), v(T, ·) = gv(·).

where fu(u, v) = u−u3+v and fv(u, v) = u−v. f clearly satisfies, (HY0) and (HY0loc).

4.3 Representation results, path regularity and other

properties

As seen before u(t, x) := Y t,x
t solves the PDE (4.2.9) in viscosity sense. If u ∈ C1,2

we would also obtain the representation of the process Z as Zt,x
t = (∇xuσ)(t, x), but

in view of Theorem 4.2.5 we have not given meaning to ∇xu. The main aim of this

section is to first prove some representation formulas, that express Z as a function of

Y and X, then use these representation formulas to obtain the so called L2- (and Lp-)

path regularity results needed to prove the convergence of the numerical discretization

of FBSDE (4.1.1)-(4.1.2) in the later sections.

4.3.1 Differentiability in the spatial parameter

Take the system (4.1.1)-(4.1.2) into account. We now show that the smoothness of

the FBSDE parameters b, σ, g, f carries over to the solution process Θ = (X, Y, Z).
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Theorem 4.3.1. Let (HXY1) hold and (t, x) ∈ [0, T ]× Rd.

Then u (from (4.2.7)) is continuously differentiable in its spatial variable. More-

over, the triple ∇xΘ
t,x = (∇xX

t,x,∇xY
t,x,∇xZ

t,x) ∈ Sp × Sp ×Hp for any p ≥ 2 and

solves for 0 ≤ t ≤ s ≤ T{
∇xX

t,x
s = Id +

∫ s
t

(∇xb)(r,X
t,x
r )∇xX

t,x
r dr +

∫ s
t

(∇xσ)(r,X t,x
r )∇xX

t,x
r dWr,

∇xiY
t,x
s = (∇xg)(X t,x

T )∇xiX
t,x
T −

∫ T
s
∇xiZ

t,x
r dWr +

∫ T
t
F (r,∇xiΘ

t,x
r )dr

(4.3.1)

for i ∈ {1, · · · , d} and with1

F : (ω, r, x, χ,Υ,Γ) 7→
(
∇xf

)
(r,Θt,x

r ) · χ+
(
∇yf

)
(r,Θt,x

r ) ·Υ +
(
∇zf

)
(r,Θt,x

r ) · Γ.

There exists a positive constant Cp independent of x such that

sup
(t,x)∈[0,T ]×Rd

‖(∇xY
t,x,∇xZ

t,x)‖Sp×Hp ≤ Cp. (4.3.2)

Furthermore, for u as in (4.2.7) we have for x ∈ Rd and 0 ≤ t ≤ s ≤ T

∇xY
t,x
s = (∇xu)(s,X t,x

s )∇xX
t,x
s P− a.s. and ‖∇xu‖∞ <∞. (4.3.3)

We recall that ∇xY
t,x is Rk×d-valued and ∇xiY

t,x denotes its i-th column. Similar

notation follows for ∇xX and ∇xZ.

Proof. Throughout fix (t, x) ∈ [0, T ] × Rd and let {ei}i∈{1,··· ,d} be the canonical unit

vectors of Rd. Let i ∈ {1, · · · , d}.
The results concerning SDE (4.1.1) follow from those in Subsection 2.5 in [46]. We

start by showing that the partial derivatives (∇xiY
t,x,∇xiZ

t,x) for any i exist, then

we will show the full differentiability. We start by proving that (4.3.1) has indeed a

solution for every i. Unfortunately, the driver of (4.3.1) does not satisfy (HY0) and

hence we cannot quote Theorem 4.2.2 directly; we use a more general result from [11].

We remark though, that the techniques used to obtain moment estimates of the form

of (4.2.4) and (4.2.6) are the same in both [11] and [64].

FBSDE (4.3.1) has a unique solution Ξt,x,i := (∇xiX
t,x, U t,x,i, V t,x,i) ∈ Sp×Sp×Hp

1The term (∇zf)(·,Θ) · Γ can be better understood if one interprets z in f not as in Rk×d but as
(Rd)k, i.e. f recieves not a matrix but its Rd-valued k lines.
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for any p ≥ 2, where (U i, V i) replaces (∇xiY,∇xiZ). This follows by a direct application

of Theorem 4.2 in [11]. It is easy to see that under (HXY1) the conditions (H1)-(H5)

in [11] (p118-119) are satisfied. First, under (HXY1), standard SDE theory (see e.g.

Theorem 2.4 in [46]) ensures that∇xX ∈ Sp for all p ≥ 2, which along with∇xg,∇xf ∈
C0,0
b , implies in turn that the terminal condition (∇xg)(X t,x

T )∇xiX
t,x
T ∈ L

p
FT and the

term
(
∇xf

)
(·,Θt,x

· )∇xiX
t,x
· = F (·,∇xiX

t,x
· , 0, 0) ∈ Sp for any p ≥ 2. Given the linearity

of F and the Lipschitz property of f in its z-variable it follows that F is uniformly

Lipschitz in Γ. Moreover, since f satisfies (4.2.1) it implies that F is monotone2 in Υ,

i.e.

〈
Υ−Υ′,

(
∇yf

)
(·,Θt,x

· ) · (Υ−Υ′)
〉
≤ Ly|Υ−Υ′|2, for any Υ,Υ′ ∈ Rk. (4.3.4)

The continuity of Υ 7→ F (r, x, χ,Υ,Γ) is also clear. Lastly, the linearity of F , the

fact that Θ ∈ Sp × Sp × Hp for any p ≥ 2 and (4.2.2) implies that condition (H5)

in [11] is also satisfied, i.e. that for any R > 0, sup|Υ|≤R |F (r, x,∇xiX
t,x
r ,Υ, 0) −

F (r, x,∇xiX
t,x
r , 0, 0)| ∈ L1([t, T ]×Ω). We are therefore under the conditions of Theo-

rem 4.2 in [11], as claimed.

In view of (4.2.3) and the linearity of F one can obtain moment estimates in the

style of (4.2.4) by following arguments similar to those in the proof of Theorem 4.2.2

(recall that (4.2.3) takes in this case a very simple form). In view of (4.2.4), we have

(recall that ∇X ∈ Sp for all p ≥ 2)

‖U i‖pSp + ‖V i‖pHp ≤ Cp
{
‖(∇xg)(X t,x

T )∇xiX
t,x
T ‖

p
Lp + ‖

(
∇xf

)
(·,Θt,x

· )∇xiX
t,x
· ‖

p
Hp
}

≤ Cp‖∇xiX
t,x‖pSp ≤ Cp, (4.3.5)

where Cp does not depend on x, t or i.

In order to obtain results on the first order variation of the solution, we follow

standard BSDE techniques used already in [46], [10] or [28]; we start by studying the

behaviour of Θt,x+εei −Θt,x for any ε > 0. Take h ∈ Rd. Via the stability of SDEs and

inequality (4.2.6) (and (HY0)), it is clear that a constant Cp > 0 independent of x

exists such that

lim
h→0
‖Θt,x+h −Θt,x‖Sp×Sp×Hp ≤ lim

h→0
Cp‖Xx+h −Xx‖Sp ≤ lim

h→0
Cp|h| = 0. (4.3.6)

2This follows easily from the differentiability of f , its monotonicity in y and the definition of
directional derivative.
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Define δΘε,i := (δXε,i, δY ε,i, δZε,i) := (Θt,x+εei − Θt,x)/ε − (∇xiX
t,x, U t,x,i, V t,x,i) for

which

δY ε,i
s =

[1
ε

(
g(X t,x+εei

T )− g(X t,x
T )
)
− (∇xg)(X t,x

T )∇xiX
t,x
T

]
−
∫ T

s

δZε,i
r dWr

+

∫ T

s

[1
ε

(
f(r,Θt,x+εei

r )− f(r,Θt,x
r )
)
− F (r, x,∇xiX

t,x
r , U t,x,i

r , V t,x,i
r )

]
dr.

(4.3.7)

Using the differentiability of the involved functions we can re-write (4.3.7) as a linear

FBSDE with random coefficients satisfying in its essence a (HY0) type assumption:

for s ∈ [t, T ], j ∈ {1, · · · , d}
δXε,j

s = 0 +
∫ s
t

[
bε,jx (r)δXε,j

r + δ∇bεr ∇xjX
t,x
r

]
dr +

∫ s
t

[
σε,jx (r)δXε,j

r + δ∇σεr ∇xjX
t,x
r

]
dWr,

δY ε,i
s =

[
gε,ix (T )δXε,i

T + δ∇gεT ∇xiX
t,x
T

]
−
∫ T
s
δZε,i

r dWr

+
∫ T
s

[
f ε,ix (r)δXε,i

r + f ε,iy (r)δY ε,i
r + f ε,iz (r)δZε,i

r + δ∇f εr · (∇xiX
t,x
r , U t,x,i

r , V t,x,i
r )

]
dr,

(4.3.8)

where δ∇f and δ∇ϕ denote the differences

δ∇f ε· :=
(
f ε,ix , f ε,iy , f ε,iz

)
(·)−

(
∇xf,∇yf,∇zf

)
(·,Θt,x

· ),

and

δ∇ϕε· := ϕε,ix (·)−∇xϕ(·,Θt,x
· ),

for ϕ ∈ {b, σ, g} (with some abuse of notation) and r ∈ [t, T ], and where we defined

ϕε,ix (r) : =

∫ 1

0

(∇xϕ)
(
r, (1− λ)X t,x

r + λX t,x+εei
r

)
dλ

=

∫ 1

0

(∇xϕ)
(
r,X t,x

r + λ
(
X t,x+εei
r −X t,x

r

))
dλ,
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and f ε,i∗ for ∗ ∈ {x, y, z} in the following way:

f ε,iz (r) :=

∫ 1

0

(∇zf)
(
r,X t,x+εei

r , Y t,x+εei
r , Zt,x

r + λ(Zt,x+εei
r − Zt,x

r )
)
dλ,

f ε,iy (r) :=

∫ 1

0

(∇yf)(r,X t,x+εei
r , Y t,x

r + λ(Y t,x+εei
r − Y t,x

r ), Zt,x
r )dλ,

f ε,ix (r) :=

∫ 1

0

(∇xf)(r,X t,x
r + λ(X t,x+εei

r −X t,x
r ), Y t,x

r , Zt,x
r )dλ.

The assumptions imply immediately that bε,ix , σ
ε,i
x , f

ε,i
x , f ε,iz are uniformly bounded,

while f ε,iy ∈ Sp, p ≥ 2 (thanks to HY 0loc). Furthermore, using estimate (4.2.4) (along

with ‖X t,x‖pSp ≤ Cp(1 + |x|p)), (4.3.5), (4.3.6), the continuity of ϕ ∈ {b, σ, g} and

its derivative it is easy to see that, in combination with the dominated convergence

theorem, one has

lim
ε→0

{
‖ϕε,ix (·)−∇xϕ(·,Θt,x

· )‖Sp + ‖
(
f ε,ix , f ε,iy , f ε,iz

)
(·)− (∇xf,∇yf,∇zf)(·,Θt,x

· )‖Hp
}

= 0.

(4.3.9)

We remark that in the above limit a localization argument for the convergence of

f ε,iy (·) to ∇yf(·,Θ·) is required, namely that we work inside a ball (of any given radius)

centered around x in which all points x+ εei ∈ Rd as ε vanishes are contained. We do

not detail the argumentation since it is similar to that given in e.g. [46], [9] or [28].

With this in mind we return to (4.3.7), written in the form of (4.3.8), and since it

is a linear FBSDE satisfying the monotonicity condition (4.2.1) we have via Corollary

3.3 in [8] (essentially our moment estimate (4.2.4) for FBSDE (4.3.8)) in combination

with (4.3.5), (4.3.6) and (4.3.9), that for any i

lim
ε→0
‖1

ε
(Θt,x+εei −Θt,x)− (∇xiX

t,x, U t,x,i, V t,x,i)‖Sp×Sp×Hp = 0, for any p ≥ 2.

Since the limit exists we identify (∇xiY
t,x,∇xiZ

t,x) with (U t,x,i, V t,x,i) and, moreover,

estimate (4.3.5) implies estimate (4.3.2). Furthermore, the above limit implies in par-

ticular that (take s = t)

∇xiu(t, x) = lim
ε→0

1

ε
[u(t, x+ εei)− u(t, x)] = lim

ε→0

1

ε
[Y t,x+εei
t − Y t,x

t ] = ∇xiY
t,x
t .

Observing that the RHS of (4.3.5) is a constant independent of t ∈ [0, T ], x ∈ Rd and
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i ∈ {1, · · · , d} we can conclude that ‖∇xiu‖∞ = sup(t,x)∈[0,T ]×Rd |∇xiY
t,x
t | <∞.

It is clear that (∇xiY
t,x
s )s∈[t,T ] is continuous in its time parameter as it is a solution

to a BSDE; we now focus on the continuity of x 7→ ∇xiY
t,x
t . Let x, x′ ∈ Rd. The differ-

ence ∇xiY
t,x −∇xiY

t,x′ is the solution to a linear FBSDE following from (4.3.1). As

before, it is easy to adapt the computations and apply Corollary 3.3 in [8] (essentially

our moment estimate (4.2.6) for FBSDEs (4.3.1)) to the difference ∇xiY
t,x
s −∇xiY

t,x′
s

yielding

‖∇xiY
t,x −∇xiY

t,x′‖2
S2

≤ Cp

{∥∥(∇xg)(X t,x
T )∇xiX

t,x
T − (∇xg)(X t,x′

T )∇xiX
t,x′

T

∥∥2

L2

+E
[( ∫ T

0

|F (r, x,∇xiX
t,x
r ,∇xiY

t,x
r ,∇xiZ

t,x
r )− F (r, x′,∇xiX

t,x′

r ,∇xiY
t,x
r ,∇xiZ

t,x
r )|ds

)p]}
.

Given the known results on SDEs, the linearity of F , (4.3.5), the continuity of the

derivatives of f and (4.3.6), dominated convergence theorem yields that ‖∇xiY
t,x −

∇xiY
t,x′‖2

S2 → 0 as x′ → x uniformly on compact sets. This mean-square continuity

of ∇xiY
t,x implies in particular that ∇xiY

t,x
t = ∇xiu(t, x) is continuous. In conclusion,

we just proved that for any i ∈ {1, · · · , d} the partial derivatives ∇xiu exist and are

continuous, hence, standard multi-dimensional real analysis implies that u is contin-

uously differentiable in its spatial variables. This argumentation is similar to that in

the proof of Corollary 4.2.4.

We are left to prove (4.3.3). Note that for any ε > 0 we have (Y t,x+εei
s − Y t,x

s )/ε =

(u(s,X t,x+εei
s ) − u(s,X t,x

s ))/ε. By sending ε → 0 and using the (continuous) differen-

tiability of u, we have ∇xY
t,x
s = (∇xu)(s,X t,x

s )∇xX
t,x
s . Hence, as the RHS of (4.3.5)

is a constant independent of t ∈ [0, T ], x ∈ Rd and i we can conclude (let s↘ t) that

‖∇xu‖∞ = sup(t,x)∈[0,T ]×Rd |∇xY
t,x
t | <∞.

4.3.2 Malliavin differentiability

As in the previous section we show a form of regularity of the solution Θ to (4.1.1)-

(4.1.2), namely the stochastic variation of Θ in the sense of Malliavin’s calculus.

Theorem 4.3.2 (Malliavin differentiability). Let (HXY1) hold. Then the solution

Θ = (X, Y, Z) of (4.1.1)-(4.1.2) verifies
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• X ∈ L1,2 and DX admits a version (u, t) 7→ DuXt satisfying for 0 ≤ u ≤ t ≤ T

DuXt = σ(u,Xu) +

∫ t

u

(∇xb)(s,Xs)DuXsds+

∫ t

u

(∇xσ)(s,Xs)DuXsdWs.

Moreover, for any p ≥ 2 there exists Cp > 0 such that

sup
u∈[0,T ]

‖DuX‖pSp ≤ Cp(1 + |x|p). (4.3.10)

• for any 0 ≤ t ≤ T , x ∈ Rm we have (Y, Z) ∈ L1,2 ×
(
L1,2

)d
. A version of

(DY,DZ)0≤u,t≤T satisfies : for t < u ≤ T , DuYt = 0 and DuZt = 0, and for

0 ≤ u ≤ t,

DuYt = (∇xg)(XT )DuXT +

∫ T

t

〈(∇f)(s,Θs), DuΘs〉ds−
∫ T

t

DuZsdWs.

(4.3.11)

Moreover, (DtYt)0≤t≤T defined by the above equation is a version of (Zt)0≤t≤T .

• the following representation holds for any 0 ≤ u ≤ t ≤ T and x ∈ Rm

DuXt = ∇xXt(∇xXu)
−1σ(u,Xu)1[0,u](t), (4.3.12)

DuYt = ∇xYt(∇xXu)
−1σ(u,Xu), a.s., (4.3.13)

Zt = ∇xYt(∇xXt)
−1σ(s,Xt), a.s.. (4.3.14)

Remark 4.3.3 (Y is already in L1,2). Via Theorem 4.3.1 we know that u ∈ C0,1. Under

(HXY1) it is known that X ∈ L1,2 (see [63]) hence using the chain rule (for Malliavin

calculus, see Proposition 1.2.3 in [63]) we obtain Y· = u(·, X·) ∈ L1,2. A careful analysis

of Theorem 4.3.1 and the results about ∇xu show that indeed X, Y ∈ L1,p for all p ≥ 2

(just combine (4.3.10) with (4.7.1) as described in Subsection 4.7.2).

Using the fact that X, Y ∈ L1,2, the statement of Theorem 4.3.2 follows easily if

the driver f in (4.1.2) does not depend on z. One would argue in the following way:

for any t ∈ [0, T ](
g(XT )− Yt +

∫ T

t

f(r,Xr, Yr)dr

)
t∈[0,T ]

∈ L1,2 ⇒
(∫ T

t

ZrdWr

)
t∈[0,T ]

∈ L1,2 ⇔ Z ∈ L1,2,
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this follows from the definition of the BSDE (4.1.2) itself and Theorem 4.7.3. The

dynamics of (4.3.11) and the representation formulas (4.3.13), (4.3.14) follow by argu-

ments similar to those given below.

Proof of Theorem 4.3.2. The first part of the statement is trivial as it follows from

standard SDE theory, see e.g. [63] or Theorem 2.5 in [46]. To prove the other statements

of the theorem, we will use an identification trick by taking advantage of the fact we

already know that Y ∈ L1,2 (see Remark 4.3.3).

Let (X, Y, Z) be the solution of (4.1.1)-(4.1.2) and define the following BSDE:

Ut = g(XT ) +

∫ T

t

f̂(r, Vr)dr −
∫ T

t

VrdWr, (4.3.15)

where the driver f̂ : Ω× [0, T ]× Rd → R is defined as

f̂(t, v) := f(t,Xt, Yt, v) = f (t,Xt, u(t,Xt), v) . (4.3.16)

It is clear that: g(XT ) ∈ D1,2, f(·, X·, Y·, 0) ∈ L1,p for all p ≥ 2 (see Remark 4.3.3) and

that v 7→ f̂(·, v) is a Lipschitz continuous function, all these imply in particular via

Lipschitz BSDE theory (see Theorem 2.1, Proposition 2.1 in [31]) that there exists a

pair (U, V ) ∈ S2×H2 solving (4.3.15). Furthermore, Theorem 4.2.2 in [31] states that

the solution to (4.1.2) is unique and hence the solution of (4.3.15) verifies (U, V ) =

(Y, Z).

Proposition 5.3 in [31], yields the existence of the Malliavin derivatives (DU,DV )

of (U, V ) with the following dynamics. Set Ξ := (X, Y, V ), then for t < u ≤ T we have

DuUt = 0, DuVt = 0 and

DuUt = (∇xg)(XT )DuXT +

∫ T

t

〈
(∇f)(s,Ξs), (DuΞs)

〉
ds−

∫ T

t

DuVsdWs, 0 ≤ u ≤ t.

Since (U, V ) = (Y, Z) then from the above BSDE for (DU,DV ) follows BSDE (4.3.11).

Moreover, Proposition 5.9 in [31] yields (4.3.13) and (4.3.14) for (U, V ) which carry

out for (Y, Z).
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4.3.3 Representation results

Here we combine the results of the two previous subsections to obtain representa-

tion formulas that will allow us to establish the path regularity properties of Y and Z

required for the convergence proof of the numerical discretization.

Theorem 4.3.4. Let the assumptions of Theorem 4.3.1 and 4.3.2 hold.

Then the following representation holds for all 0 ≤ t ≤ s ≤ T dP− a.s.

Zt,x
s = (∇xuσ) (s,X t,x

s ) (4.3.17)

= ∇xY
t,x
s

(
∇xX

t,x
s

)−1
σ(s,X t,x

s ). (4.3.18)

Moreover Z ∈ Sq for any q ≥ 2 with

‖Z‖Sq ≤ Cq(1 + |x|q), q ≥ 2. (4.3.19)

Proof. The representation Z = ∇Y (∇X)−1σ(·, X) follows from Theorem 4.3.2, while

from Theorem 4.3.1 we have

Zt,x
s = ∇xY

t,x
s (∇xX

t,x
s )−1σ(s,X t,x

s ) = (∇xu)(s,X t,x
s )
(
∇xX

t,x
s

(
∇xX

t,x
s

)−1
)
σ(s,X t,x

s )

= (∇xu)(s,X t,x
s )σ(s,X t,x

s ).

Since all the involved processes (in the RHS) are continuous we can identify Z with

its continuous version. Moreover, as all the processes in the RHS belong to Sp for all

p ≥ 2 it follows that Z ∈ Sp for all p ≥ 2. Combining Hölder’s inequality with the fact

that X,∇X ∈ Sp for all p ≥ 2 and estimate (4.3.2), leads to (4.3.19), i.e.

‖Z‖Sp = ‖∇xY
t,x
· (∇xX

t,x
· )−1σ(·, X t,x

· )‖Sp

≤ Cp‖∇xY
t,x‖S3p‖(∇xX)−1‖S3p‖1 +X t,x‖S3p ≤ Cp(1 + |x|).

4.3.4 Path regularity results

Now let π be a partition of the interval [0, T ], say 0 = t0 < · · · < ti < · · · <
TN = T , and mesh size |π| = maxi=0,··· ,N−1(ti+1 − ti). Given π, we also consider

rπ = |π|/
(

mini=0,··· ,N−1(ti+1 − ti)
)
.
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Let Z be the control process in the solution to BSDE (4.1.2), under (HX0)-(HY0).

We define a set of random variables {Z̄ti}ti∈π term wise given by

Z̄ti =
1

ti+1 − ti
E
[ ∫ ti+1

ti

Zsds
∣∣Fti], 0 ≤ i ≤ N − 1, and Z̄tN = ZT . (4.3.20)

The RV ZT can be obtained using (4.3.17), namely ZT = (∇xg)(XT )σ(T,XT ) when

g ∈ C1. If g is only Lipschitz continuous then one easily sees that a RV G ∈ L∞(FT )

exists such that ZT = Gσ(T,XT ). In any case, under (HX0) and (HY0) it easily follows

that

Z̄tN = ZT ∈ Lp(FT ) for any p ≥ 2 and Z̄ti ∈ L2 for any ti ∈ π. (4.3.21)

It is not difficult to show that Z̄ti is the best Fti-measurable square integrable RV

approximating Z in H2([ti, ti+1]), i.e.

E
[ ∫ ti+1

ti

|Zs − Z̄ti |2ds
]

= inf
ξ∈L2(Ω,Fti )

E
[ ∫ ti+1

ti

|Zs − ξ|2ds
]
. (4.3.22)

Let now Z̄t := Z̄ti for t ∈ [ti, ti+1), 0 ≤ i ≤ N − 1. It is equally easy to see that Z̄

converges to Z in H2 as |π| vanishes: since Z is adapted, the family of processes Zπ

indexed by our partition defined by Zπ
t = Zti for t ∈ [ti, ti+1) converges to Z in H2 as

|π| goes to zero. Since {Z̄} is the best H2-approximation of Z, we obtain

‖Z − Z̄‖H2 ≤ ‖Z − Zπ‖H2 → 0, as |π| → 0,

although without knowing the rate of this convergence.

The next result expresses the modulus of continuity (in the time variable) for Y

and Z.

Theorem 4.3.5 (Path regularity). Let (HX0), (HY0loc) hold. Then the unique solution

(X, Y, Z) to (4.1.1)-(4.1.2) satisfies (X, Y, Z) ∈ Sp × Sp × Sp for all p ≥ 2. Moreover,

(i) for any p ≥ 2 there exists a constant Cp > 0 such that for 0 ≤ s ≤ t ≤ T we

have

E
[

sup
s≤u≤t

|Yu − Ys|p
]
≤ Cp(1 + |x|p)|t− s|

p
2 ; (4.3.23)
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(ii) for any p ≥ 2 there exists a constant Cp > 0 such that for any partition π of

[0, T ] with mesh size |π|

N−1∑
i=0

E
[( ∫ ti+1

ti

|Zt − Zti |2dt
) p

2
+
(∫ ti+1

ti

|Zt − Zti+1
|2dt
) p

2
]
≤ Cp(1 + |x|p)|π|

p
2 ,

(4.3.24)

(iii) in particular, there exists a constant C such that for any partition π = {0 = t0 <

· · · < tN = T} of the interval [0, T ] with mesh size |π| we have

max
0≤i≤N−1

sup
t∈[ti,ti+1]

{
E
[
|Yt−Yti |2

]
+E
[
|Yt−Yti+1

|2
]}

+
N−1∑
i=0

E
[ ∫ ti+1

ti

|Zs−Z̄ti |2ds
]
≤ C|π|.

If, as |π| → 0, rπ remains bounded 3 then

N−1∑
i=0

E
[ ∫ ti+1

ti

|Zs − Z̄ti+1
|2ds

]
≤ C|π|.

Proof. Fix (t, x) ∈ [0, T ]×Rd, take s ∈ [t, T ] and throughout this proof we work with

Θt,x and ∇xΘ
t,x; to avoid a notational overload we omit the super- and subscript and

write Θ and ∇Θ.

We first prove point (i) and (ii) under Assumption (HXY1), then we use a mol-

lification argument to recover the case (HX0)-(HY0loc). We then explain how (iii) is

obtained.

Proof of (i) under (HXY1): Z ∈ Sq for any q ≥ 2 follows from (4.3.19). Hence

writing the BSDE for the difference Yu − Ys we have

Yu − Ys =

∫ u

s

f(r,Θr)dr −
∫ u

s

ZrdWr ≤
∫ u

s

K (1 + |Xr|+ |Yr|m + |Zr|) dr −
∫ u

s

ZrdWr

hence taking absolute values, the sup over u ∈ [s, t], power p, expectations and Jensen’s

inequality leads, for some constant Cp > 0, to

E
[

sup
u∈[s,t]

|Yu − Ys|p
]
≤ Cp

{
|t− s|p

(
1 + ‖(X, Y, Z)‖pSp×Sp×Sp

)
+ E

[
sup
u∈[s,t]

∣∣∣ ∫ u

s

ZrdWr

∣∣∣p]}.
3This is trivially satisfied for the uniform grid for which rπ = 1.
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Applying Burkholder-Davis-Gundy’s inequality (BDG) to the last term in the RHS

yields

E
[

sup
u∈[s,t]

∣∣∣ ∫ u

s

ZrdWr

∣∣∣p] ≤ CpE
[( ∫ t

s

|Zr|2dr
) p

2
]
≤ Cp|t− s|

p
2‖Z‖pSp .

It then follows that

E
[

sup
u∈[s,t]

|Yu − Ys|p
]
≤ Cp

{
|t− s|p + |t− s|

p
2

}
≤ Cp(1 + |x|p)|t− s|

p
2 .

Proof of (ii) under (HXY1): To prove the desired inequality we use the representa-

tion (4.3.14) (alternatively (4.3.18)). We first estimate the difference E[
( ∫ ti+1

ti
|Zs −

Zti |2ds
)p/2

]. The difference Zs − Zti can be written as Zs − Zti = I1 + I2 with

I2 := (∇Ys −∇Yti) (∇Xti)
−1 σ(ti, Xti) and

I1 := ∇Ys
{(

(∇Xs)
−1 − (∇Xti)

−1)σ(s,Xs) + (∇Xti)
−1 [σ(s,Xs)− σ(ti, Xti)]

}
.

The estimation of I1 is rather easy as it relies on Hölder’s inequality combined with

(4.3.2), (HX0), Theorems 2.3 and 2.4 in [46] (see proof of Theorem 5.5(i) in [46]), in

short we have

E[|I1|p] ≤ Cp(1 + |x|p)|π|
p
2 .

Concerning the second part, the estimation of I2, it follows from an adaptation of

the proof of Theorem 5.5(ii) in [45]. We reformulate the main argument and skip the

obvious details. Let us start with a simple trick, as s ∈ [ti, ti+1],

E
[
|(∇Ys −∇Yti)(∇Xti)

−1σ(ti, Xti)|p
]

= E
[
E
[
|∇Ys −∇Yti |p

∣∣Fti]|(∇Xti)
−1σ(ti, Xti)|p

]
. (4.3.25)

Writing the BSDE for the difference ∇Ys − ∇Yti for ti ≤ s ≤ ti+1 we have for some

constant C > 0

E
[
|∇Ys −∇Yti |p

∣∣Fti] ≤ C E
[
Î[ti,ti+1]

∣∣Fti]
where Î[ti,ti+1] :=

(∫ ti+1

ti

|(∇f)(r,Θr)| |∇Θr|dr
)p

+
(∫ ti+1

ti

|∇Zr|2dr
)p/2

,
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where we used the conditional BDG inequality and maximized over the time interval

[ti, ti+1].

Combining these last two inequalities and observing that since ∇Xti and σ(Xti) are

Fti-adapted we can drop the conditional expectation from (4.3.25). Hence, for some

C > 0,

N−1∑
i=0

E

[(∫ ti+1

ti

|I2|2ds

) p
2

]
≤ C|π|

p
2
−1

N−1∑
i=0

∫ ti+1

ti

E [ |I2|p] ds

≤ C |π|
p
2
−1

N−1∑
i=0

|π|E
[
|(∇Xti)

−1σ(ti, Xti)|p Î[ti,ti+1]

]
≤ C |π|

p
2 E

[
sup

0≤t≤T
|(∇Xt)

−1σ(t,Xt)|p
N−1∑
i=0

Î[ti,ti+1]

]
≤ C |π|

p
2 ‖(∇X)−1‖

1
3

S3p‖1 +X‖
1
3

S3p‖Î[0,T ]‖L1

≤ C (1 + |x|p)|π|
p
2 .

The last line follows from standard inequalities (sum of powers is less than the power

of the sum), the growth conditions on ∇f and the fact that for any q ≥ 2 we have:

X,∇X, (∇X)−1 ∈ Sq, Y, Z,∇Y ∈ Sq and ∇Z ∈ Hq.

Collecting now the estimates we obtain the desired result for the difference Zs−Zti .
To have the same estimate for the difference Zs − Zti+1

we need only to repeat the

above calculations with a minor change in order to incorporate the Zti+1
: one writes

Zs − Zti+1
with the help of I i+1

1 and I i+1
2 , which are I1 and I2 respectively but with

ti+1 instead of ti. The estimate for I i+1
1 follows from SDE theory in the same fashion

as for I1 above; concerning I i+1
2 one just needs another small trick,

I i+1
2 =

(
∇Ys −∇Yti+1

) (
∇Xti+1

)−1
σ(ti+1, Xti+1

)

≤
(
|∇Ys|+ |∇Yti+1

|
)[ (
∇Xti+1

)−1
σ(ti+1, Xti+1

)− (∇Xti)
−1 σ(ti, Xti)

]
(4.3.26)

+
(
∇Ys −∇Yti+1

)
(∇Xti)

−1 σ(ti, Xti) (4.3.27)

The rest of the proof follows just like before, like I1 for (4.3.26) and like I2 for (4.3.27).

Final step - (i) and (ii) under (HX0)-(HY0loc) - arguing via mollification: In this

step we rely on a standard mollification argument. Note that the mollified drivers are

still monotone.

Take bn, σn, gn, fn as mollified versions of b, σ, g, f in their spatial variables such
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that the mollified functions satisfy uniformly (in n) (HX0) and (HY0loc), with uni-

form Lipschitz and monotonicity constant. Moreover, Theorem 4.2.2 ensures that

Θ = (Xn, Y n, Zn) ∈ Sp × Sp × Hp for any p ≥ 2 and solves (4.1.1)-(4.1.2) with

bn, σn, gn, fn replacing b, σ, g, f . Furthermore, in view of (4.2.6) and the standard the-

ory of SDEs it is rather simple to deduce that Θn → Θ as n→∞ in Sp×Sp×Hp for

all p ≥ 2.

For each n ∈ N estimates (4.3.23) and (4.3.24) hold for Θn. Since bn, σn, gn, fn

satisfy (HX0) and (HY0loc) uniformly in n then it is easy to check that the constants

appearing on the RHS of (4.3.23) and (4.3.24) are independent of n. Hence, by taking

the limit of n → ∞ in (4.3.23) and (4.3.24) and given the convergence Θn → Θ as

n→∞ (and the continuity of the involved functions) the statement follows.

Proof of (iii) under (HX0)-(HY0loc): The estimates concerning Y and Z̄ti follow

trivially from (4.3.23) on the one hand, and (4.3.24) combined with (4.3.22) on the

other hand. For the difference Zs − Z̄ti+1
more care is required,

N−1∑
i=0

E
[ ∫ ti+1

ti

|Zs − Z̄ti+1
|2ds

]
≤ 2

N−1∑
i=0

E
[ ∫ ti+1

ti

|Zs − Zti+1
|2 + |Zti+1

− Z̄ti+1
|2ds

]
≤ C|π|+ 2

N−1∑
i=0

(ti+1 − ti)E
[
|Zti+1

− Z̄ti+1
|2
]
,

where the last inequality follows from the proof of ii). We next estimate the last term

in the RHS, since Z̄tN = ZT by construction

N−1∑
i=0

(ti+1 − ti)E
[
|Zti+1

− Z̄ti+1
|2
]

=
N−2∑
i=0

(ti+1 − ti)E
[
|Zti+1

− Z̄ti+1
|2
]

≤ rπ

N−2∑
i=0

(ti+2 − ti+1)E
[
|Zti+1

− Z̄ti+1
|2
]
≤ rπ

N−2∑
i=0

∫ ti+2

ti+1

E
[
|Zti+1

− Z̄ti+1
|2
]
ds

≤ rπ

N−1∑
j=1

∫ tj+1

tj

E
[
|Ztj − Z̄tj |2

]
ds ≤ 2rπ

N−1∑
i=0

E
[ ∫ ti+1

ti

|Zs − Zti |2 + |Zs − Z̄ti |2ds
]
,

where we made use of the assumption on the grid. The result now follows by combining

(iii) with the above estimates and having in mind that rπ is uniform over the partition.

Corollary 4.3.6. Let (HX0), (HY0) hold and take the family {Z̄ti}ti∈π. For any p ≥ 1
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there exists constant Cp independent of |π| such that

E
[N−1∑
i=0

(
|Z̄ti |2(ti+1 − ti)

)p] ≤ Cp <∞.

If, moreover, (HY0loc) holds then maxti∈π E[ |Z̄ti |2p] ≤ Cp <∞.

Proof. The second sattement follows easily from the definition of Z̄ti (see (4.3.20)) and

the fact that Z ∈ Sp for any p ≥ 2 (Theorem 4.3.5). And, under (HY0loc) the 2nd

statement implies the first.

We leave the proof of the first statement for the interested reader. The proof is based

on standard integral manipulations combining the definition of Z̄, Jensen’s inequality

and the tower property of the conditional expectation.

4.3.5 Some finer properties

Here we discuss properties of the solution to (4.1.1)-(4.1.2) in more specific settings.

The first lemma concerns a set-up where Z belongs to S∞ (rather than H2 or S2).

Proposition 4.3.7 (The additive noise case). Let (HX0)-(HY0loc) hold. Assume ad-

ditionally that σ(t, x) = σ(t) for all (t, x) ∈ [0, T ]× Rd. Then Z ∈ S∞.

Proof. Assume first that (HXY1) also hold. Then the result follows easily by combining

the representation formula (4.3.17) with the 2nd part of (4.3.3) and injecting that σ

is uniformly bounded.

Now using a standard mollification argument, as was used in the last step of the

proof of Theorem 4.3.5, one easily concludes that the result also holds under (HX0)-

(HY0loc).

If the initial data g and f(·, ·, 0, 0) are bounded then so will be the Y process; the

second component, Z will also satisfy a type of boundedness condition (see (4.3.28)

below).

Lemma 4.3.8 (The bounded setting). Let (HX0), (HY0) hold and further that g and

(t, x) 7→ f(t, x, 0, 0) are uniformly bounded then (Y, Z) ∈ S∞ ×H2.

Denoting T[0,T ] the set of all stopping times τ ∈ [0, T ], then Z satisfies further4 for

4This means Z belongs to the so called HBMO-spaces, see Subsection 2.3 in [46] or Section 10.1
in [78].
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some constant KBMO > 0

sup
τ∈T[0,T ]

∥∥E[ ∫ T

τ

|Zs|2ds
∣∣Fτ]∥∥∞ ≤ KBMO <∞. (4.3.28)

The constant KBMO depends only on ‖Y ‖S∞, the bounds for g, f(·, ·, 0, 0) and the

constants appearing in (HY0).

Proof. The boundedness of Y follows from (4.2.5) by using that g(X·), f(·, X·, 0, 0) ∈
S∞. Knowing that Y ∈ S∞ we can easily adapt the proof of Lemma 10.2 in [78] to

our setting, where we make use of the inequality |z| ≤ 1 + |z|2, to obtain (4.3.28); an

alternative proof would be to use (4.2.5).

The first of the above results implies that Z is bounded. Such a setting also includes

the case of σ(t, x) = 1 which is common in many applications in reaction-diffusion

equations. The next result provides another type of control for the growth of the

process Z without the boundedness assumption on σ.

Proposition 4.3.9. Let the assumptions of Lemma 4.3.8 hold. Assume further that

|Z|2 is a sub-martingale then |Zt| ≤ KBMO/
√
T − t, ∀ t ∈ [0, T ] P− a.s..

In particular, if σ is uniformly elliptic and (HXY1) holds then there exists C > 0

such that |∇xu(t, x)| ≤ C/
√
T − t, ∀ (t, x) ∈ [0, T )× Rn.

Proof. The first statement follows by a careful but rather clean analysis of the fact

that Z satisfies (4.3.28), which in particular means any t ∈ [0, T ] P-a.s.

KBMO ≥ E
[ ∫ T

t

|Zs|2ds
∣∣Ft] =

∫ T

t

E
[
|Zs|2

∣∣Ft] ds ≥
∫ T

t

|Zt|2ds = |Zt|2(T − t),

where we applied Fubini then used the sub-martingale property of Z2. The sought

statement now follows by a direct rewriting of the above inequality. The second state-

ment in the proposition follows from the first by using the representation Zt,x
t =

(∇xuσ)(t, x) and the ellipticity of σ.
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4.4 Numerical discretization and general estimates.

In this section and the following ones, we discuss the numerical approximation of

(4.1.1)-(4.1.2). We consider a regular partition5 π of [0, T ] with N + 1 points ti = ih

for i = 0, · · · , N with h := T/N .

Remark 4.4.1 (On constants). Throughout the rest of this work we introduce a

generic constant c > 0, that will always be independent of h or N , though it may

depend on the problem’s data, namely the constants appearing in the assumptions,

and may change from line to line.

4.4.1 Discretization of the SDE and further setup

Numerical methods for SDEs with Lipschitz continuous coefficients are well under-

stood, see Section 10 in [49]. Therefore, we postulate that there exists a family of RVs

{Xi}i=0,...,N that approximates the solution X to (4.1.1) over the grid π. More exactly,

for any p ≥ 2 there exists a constant c = c(T, p, x) such that

sup
N∈N

max
i=0,...,N

E
[
|Xi|p

]
≤ c and max

i=0,...,N
E
[
|Xti −Xi|p

] 1
p ≤ chγ, γ ≥ 1

2
, (4.4.1)

where γ is called the rate of the strong convergence and the RVs {Xti}ti∈π are the

solution to (4.1.1) on the grid points π. Under (HX0) the Euler scheme give an ap-

proximation with γ = 1/2. For conditions required for the higher order schemes we

refer to [49].

Throughout the rest of this work we assume that the family {Xi}i=0,...,N has

been computed; we denote by {Fi}i=0,...,N the associated discrete-time filtration Fi :=

σ(Xj, j = 0, · · · , i) and with respect to this filtration we define the operator Ei[·] :=

E[·|Fi].
For the analysis of the time-discretization error, we also make use of the following

standard path-regularity estimate for X, which holds under (HX0): there exists a

constant c > 0 such that

max
i=0,...,N−1

sup
ti≤s≤ti+1

{
E
[
|Xs −Xti |2

] 1
2 + E

[
|Xs −Xti+1

|2
] 1

2

}
≤ c h

1
2 . (4.4.2)

5We point out that the results we state would hold for non-uniform time-steps, but we work with
a regular partition for notational clarity and to keep the focus on the main issues.

115



4.4.2 Fundamental lemma for convergence

The goal of this section is to present a general result on the numerical approxima-

tions of the BSDE (4.1.2). To estimate the global error, we follow a path, classical in

numerical analysis for SDEs and ODEs, where the local error is decomposed into two

parts: one-step error and propagation of error with time (controlled by the stability

of the scheme). Although this type of analysis has already been used in the context

of Lipschitz BSDEs (see e.g. [23], [16] or [17]), we generalize it to the non-Lipschitz

framework we are working with. More precisely, the Fundamental Lemma we present

below allows us to cope with schemes which lack stability in the sense of [17]6.

Theorem 4.3.5 implies that to approximate (Y, Z) solution to (4.1.2) one needs

only to approximate the family {(Yti , Z̄ti)}ti∈π (recall (4.3.20)) on π via a family of

RVs {(Yi, Zi)}i=0,··· ,N , the said numerical approximation.

The error criteria that we consider for the numerical approximation is standard

and given by

ERRπ(Y, Z) :=
(

max
i=0,...,N

E
[
|Yti − Yi|2

]
+

N−1∑
i=0

E
[
|Z̄ti − Zi|2

]
h
) 1

2
. (4.4.3)

In abstract terms, a discretization scheme generates recursively a family of RVs {(Yi, Zi)}i=0,··· ,N

approximating {(Yti , Z̄ti)}ti∈π via Markovian operators Φi

Φi : L2(Fi+1)× L2(Fi+1)→ L2(Fi)× L2(Fi)

in the following way. Start with an initial approximation (YN , ZN) and define for

i ∈ {N − 1, · · · , 0} (Yi, Zi) = Φi(Yi+1, Zi+1). The purpose of the Fundamental Lemma

below is to formulate in a transparent way the ingredients required to show convergence

of {(Yi, Zi)}i=0,··· ,N to {(Yti , Z̄ti)}ti∈π in the norm (4.4.3).

As usual the estimation of the global error requires controls on how the error

propagates at each step. Since (Yi, Zi) is obtained via Φi from the input (Yi+1, Zi+1)

we introduce the following notation: given a Fti+1
-measurable input (Y ,Z), the pair

(Yi,(Y,Z), Zi,(Y,Z)) denotes the associated output of Φi(Y ,Z); writing (Yi, Zi) without

specifying the input denotes the canonical output of Φi(Yi+1, Zi+1), that is, we refer

to the family of RV’s {(Yi, Zi)}i=0,...,N .

6See definition 2.1 in [17] with ζYi = ζZi = 0 for i = 0, . . . , N − 1.
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As we already indicated, we decompose the error into two parts: the one-step

discretization error and the propagation to time ti of the error from time ti+1. Given

i ∈ {0, · · · , N − 1} we write

Yti − Yi := Yti − Yi,(Yi+1,Zi+1) =
(
Yti − Yi,(Yti+1 ,Z̄ti+1 )

)
︸ ︷︷ ︸

one-step error

+
(
Yi,(Yti+1 ,Z̄ti+1 ) − Yi,(Yi+1,Zi+1)

)
︸ ︷︷ ︸

stability of the scheme

,

and similarly for Z

Z̄ti−Zi := Z̄ti−Zi,(Yi+1,Zi+1) =
(
Z̄ti − Zi,(Yti+1 ,Z̄ti+1 )

)
︸ ︷︷ ︸

one-step error

+
(
Zi,(Yti+1 ,Z̄ti+1 ) − Zi,(Yi+1,Zi+1)

)
︸ ︷︷ ︸

stability of the scheme

.

We now give meaning to our concept of stability, generalizing that in [16] and [17].

Definition 4.4.2 (Scheme stability). We say that the numerical scheme {(Yi, Zi)}i=0,··· ,N

is stable if for some ρ > 0 there exists a constant c > 0 such that

E[|Yi,(Yti+1 ,Z̄ti+1 ) − Yi,(Yi+1,Zi+1)|2] + ρE[|Zi,(Yti+1 ,Z̄ti+1 ) − Zi,(Yi+1,Zi+1)|2]h

≤ (1 + ch)
(
E[|Yti+1

− Yi+1|2] +
ρ

4
E[|Z̄ti+1

− Zi+1|2]h
)

+ E[Hi], (4.4.4)

where Hi ∈ L1(Fi) and moreover {Hi}i=0,··· ,N−1 satisfies

RS(H) := max
i=0,...,N−1

N−1∑
j=i

ec(j−i)hE[Hj]→ 0, as h→ 0.

Remark 4.4.3. In the case where f is a globally Lipschitz function, it can be shown

for both implicit and explicit schemes that Hi = 0 (see [23] or [17]). In our setting,

where f is a monotone function with polynomial growth y, it may not always not be

possible to dominate the term Hi by zero. Nevertheless, our definition of stability is

sufficient for our numerical analysis, as we can control the stability remainder term

RS(H).

We also point out that it is important that in (4.4.4), we have ρ > ρ
4

(compare

LHS with RHS). This later allows the use of Lemma 4.7.4.

We now state the Fundamental Lemma which is the basis of the error analysis

throughout.
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Lemma 4.4.4 (Fundamental Lemma). Assume that the numerical scheme {(Yi, Zi)}i=0,··· ,N

is stable. Denoting the one-step discretization errors for i = 0, · · · , N − 1 by

τi(Y ) := E[|Yti − Yi,(Yti+1 ,Z̄ti+1 )|2] and τi(Z) := E[|Z̄ti − Zi,(Yti+1 ,Z̄ti+1 )|2h], (4.4.5)

there exists a constant C = C(ρ, T, c) such that

(
ERRπ(Y, Z)

)2

≤ C
{
E[ |YtN − YN |2] + E[|Z̄tN − ZN |2]h+

N−1∑
i=0

(τi(Y )

h
+ τi(Z)

)}
+ (1 + h)RS(H)

(4.4.6)

This result states in a rather clear fashion (although RS(H) is unknown at this

point) what is required in order to have convergence of the numerical scheme. One

needs a control on the approximation of the terminal conditions, a control on the sum

of the local discretization errors and a control on the stability remainder RS(H).

Proof. We decompose the error as explained above and use Young’s inequality to get

|Yti − Yi|2 ≤ (1 +
1

h
)|Yti − Yi,(Yti+1 ,Z̄ti+1 )|2 + (1 + h)|Yi,(Yti+1 ,Z̄ti+1 ) − Yi,(Yi+1,Zi+1)|2

and

|Z̄ti − Zi|2h ≤ 2|Z̄ti − Zi,(Yti+1 ,Z̄ti+1 )|2h+ 2|Zi,(Yti+1 ,Z̄ti+1 ) − Zi,(Yi+1,Zi+1)|2h.

Take ρ > 0 from (4.4.4) and combine (4.4.5) with the above, it then follows that

E[|Yti − Yi|2] +
ρ

2
E[|Z̄ti − Zi|2]h

≤ (1 + h)E[|Yi,(Yti+1 ,Z̄ti+1 ) − Yi,(Yi+1,Zi+1)|2]

+ ρE[|Zi,(Yti+1 ,Z̄ti+1 ) − Zi,(Yi+1,Zi+1)|2]h+
(

(1 +
1

h
)τi(Y ) + ρτi(Z)

)
.
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Since ρ ≤ (1 + h)ρ, by the stability of the scheme (see (4.4.4)) it follows that

E[|Yti − Yi|2] +
ρ

2
E[|Z̄ti − Zi|2]h (4.4.7)

≤ (1 + h)(1 + ch)
(
E[|Yti+1

− Yi+1|2] +
ρ

4
E[|Z̄ti+1

− Zi+1|2]h
)

+
(

(1 +
1

h
)τi(Y ) + ρτi(Z) + (1 + h)E[Hi]

)
.

Taking Ii := |Yti − Yi|2 + ρ
4
|Z̄ti − Zi|2h we have

Ii +
ρ

4
E[|Z̄ti − Zi|2]h ≤ (1 + h)(1 + ch)Ii+1 +

(
(1 +

1

h
)τi(Y ) + ρτi(Z) + (1 + h)E[Hi]

)
,

and we conclude the proof using Lemma 4.7.4.

4.4.3 Discretization of the backward component

Let throughout ti, ti+1 ∈ π. To approximate the solution (Y, Z) to (4.1.2) we need

two approximations, one for the Y component and one for the Z component. Write

(4.1.2) over the interval [ti, ti+1] and take Fti-conditional expectations to obtain

Yti = Eti
[
Yti+1

+

∫ ti+1

ti

f(s,Θs)ds
]
. (4.4.8)

For the Z component, one multiplies (4.1.2) (written over the interval [ti, ti+1]) by

∆Wi+1 and takes Fti-conditional expectations to obtain (using Itô’s Isometry) the

implicit formula

0 = Eti
[
∆Wi+1

(
Yti+1

+

∫ ti+1

ti

f(s,Θs)ds
)]
− Eti

[ ∫ ti+1

ti

Zsds
]
. (4.4.9)

One now obtains a scheme by approximating the Lebesgue integral via the θ-integration

rule (indexed by a parameter θ ∈ [0, 1]), i.e. for some function ψ∫ ti+1

ti

ψ(s)ds ≈
[
θψ(ti) + (1− θ)ψ(ti+1)

]
(ti+1 − ti), θ ∈ [0, 1].

This type of approximation is known to be of first order for θ 6= 1/2 and of higher order

for θ = 1/2, see [76] at the end of this section. Unfortunately, with the results obtained

so far (see Section 4.3) we are not able to prove the convergence of a general higher
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order approximation in its full generality; roughly, the issue boils down to obtaining

controls on |∂2
xxv| where v is solution to (4.2.9). However, under the results of Section

4.3 we do not even know if ∂2
xxv exists. Under the assumption that f is independent

of z we can prove that the scheme is indeed of higher order (in the y component); the

general case is left for future research.

From (4.4.9) above we have (compare with (4.3.20))

Z̄ti :=
1

h
Eti
[ ∫ ti+1

ti

Zsds
]

=
1

h
Eti
[
∆Wti+1

(
Yti+1

+

∫ ti+1

ti

f(s,Θs)ds
)]
,

and we approximate (Zs)s∈[ti,ti+1] via Z̄ti and Z̄ti+1
rather than Zti or Zti+1

. Following

the notation for Θ we denote Θ̄ti := (Xti , Yti , Z̄ti) and using the θ-integration rule it

follows

Yti = Eti
[
Yti+1

+ h
[
θf(ti, Θ̄ti) + (1− θ)f(ti+1, Θ̄ti+1

)
]

+

∫ ti+1

ti

R(s)ds

]
, (4.4.10)

Z̄ti = Eti
[

∆Wti+1

h

(
Yti+1

+ (1− θ)f(ti+1, Θ̄ti+1
)h+

∫ ti+1

ti

R(s)ds
)]

, (4.4.11)

where the error term is, for s ∈ [ti, ti+1], defined as R(s) := θRI(s) + (1 − θ)RE(s)

where

RI(s) := f(s,Θs)− f(ti, Θ̄ti) and RE(s) := f(s,Θs)− f(ti+1, Θ̄ti+1
). (4.4.12)

Remark 4.4.5. For the error analysis here and in the following section we always

understand the set of RVs {(Yti , Z̄ti)}ti∈π as the true solution of the BSDE on the

partition points ti ∈ π but in the set-up of (4.4.10) and (4.4.11). We emphasize that

our numerical scheme does not aim at approximating Z itself over π but the family

{Z̄ti}ti∈π.

The order of the approximation depends on the smoothness of the driver f and the

properties of the other coefficients. Ignoring the error term R we arrive at the following

discretization scheme: define YN := g(XN) and ZN := 0 and for i = 0, 1, . . . , N − 1:

Yi := Ei
[
Yi+1 + (1− θ)f(ti+1, Xi+1, Yi+1, Zi+1)h

]
+ θf(ti, Xi, Yi, Zi)h, (4.4.13)

Zi := Ei
[∆Wti+1

h

(
Yi+1 + (1− θ)f(ti+1, Xi+1, Yi+1, Zi+1)h

)]
(4.4.14)
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We point out that we aim at 1st order schemes, so setting ZN = 0 is not an issue. For

a higher order schemes, ZT needs to be approximated in a more robust fashion, e.g.

following (4.3.21), ZT = (∇xg)(XT )σ(T,XT ) ≈ (∇xg)(XN)σ(T,XN) = ZN (under the

extra assumption that ∇g is Lipschitz).

We can already estimate the error on the terminal conditions, which is the first

term in the global error estimate of Lemma 4.4.4.

Lemma 4.4.6. Let (HX0), (HY0) hold. Then there exists a constant c such that (recall

(4.3.20))

E[|YtN − YN |p]
1
p ≤ chγ for any p ≥ 2 and E[|Z̄tN − ZN |2h] ≤ c h, (4.4.15)

where γ is the order of the approximation {Xi}i=0,...,N of X (according to (4.4.1)).

Assume that g ∈ C1
b and that ∇g is Lipschitz continuous. Define ZN := (∇xg)(XN)σ(T,XN)

then E[|Z̄tN − ZN |2h] ≤ c h2.

Proof. The error estimate on YtN results from the Lipschitz regularity of g and the

estimate on E[|XtN − XN |2] given by (4.4.1). For the error estimate on Z, we have

ZN = 0, and Z̄tN = ZT , which in turn implies E[|Z̄tN − ZN |2h] = E[|ZT |2]h ≤ c h

where we have used (4.3.21).

The second estimate follows easily using that Z̄T = ZT = ∇g(XT )σ(T,XT ) and

using the Lipschitz property of∇g and σ, Cauchy-Schwartz’ inequality and (4.4.1).

4.4.4 Existence and local estimates for the general θ-scheme

In this subsection we start the study of the θ-scheme (4.4.13)-(4.4.14) by analyzing

one step of it, i.e. going from time ti+1 to ti. To simplify notation, we define fi+1 :=

f(ti+1, Xi+1, Yi+1, Zi+1) and Ai+1 := Yi+1 + (1− θ)fi+1h.

Along with (HX0) and (HY0) we make the temporary assumption that Yi+1, Zi+1, fi+1 ∈
L2 and analyze how this integrability carries on to the next time step; such integrability

assumption is clearly satisfied by YN , ZN and fN .

For θ = 0 (i.e. the explicit case) the scheme step is well defined as Yi and Zi

can be easily computed. For θ > 0, there is no issue in defining Zi from (4.4.14),

but unlike the Lipschitz case, it is not immediate that the solution Yi to the implicit

equation (4.4.13) exists. We need to show that there exists a unique Yi solving Yi =

Ei [Ai+1]+θf(ti, Xi, Yi, Zi)h, where Ei[Ai+1], Xi and Zi are already known. This follows
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from Theorem 26.A in [80] (p557). Define (almost surely) the map F : y 7→ y −
θf
(
ti, Xi(ω), y, Zi(ω)

)
h. This map is strongly monotone (increasing) in the sense of

Definition 25.2 in [80], i.e. there exists a µ > 0 such that for all y, y′,

〈y′ − y, F (y′)− F (y)〉 ≥ µ|y′ − y|2.

Indeed, from (HY0) and Remark 4.2.1 we have

〈y′ − y, F (y′)− F (y)〉 ≥ (1− θLyh)|y′ − y|2,

so if h < 1/(θLy) we can take µ = (1− θLyh) > 0. This (almost surely) guarantees the

existence of a unique Yi(ω) = F−1
(
Ei[(Ai+1)](ω)

)
, as needed. By the monotonicity of

F, Yi can be quickly computed using, for example, Newton-Raphson type methods.

Now, Yi so defined is only a Fi-measurable RV. 7 The following proposition guaran-

tees that if θ > 0, the pair (Yi, Zi) and the term fi are square integrable provided the

corresponding RVs at ti+1 also are. So for every N , by iteration, (Yi, Zi) is well-defined

for i = N − 1, · · · , 0. For θ ≥ 1/2, this estimate also leads to a uniform bound, as will

become clear in the next section.

Proposition 4.4.7. Let (HX0), (HY0) hold, θ ∈ [0, 1] and set h ≤ min{1, [4θ
(
Ly +

3dθL2
z

)
]−1}. Then there exists a constant c such that for any i ∈ {0, · · · , N − 1}

|Yi|2 +
1

2d
|Zi|2h+ 2θ2|fi|2h2 ≤ (1 + ch)Ei

[
|Yi+1|2 +

1

8d
|Zi+1|2h

]
+ ch

+ c (|Xi|2 + Ei
[
|Xi+1|2

]
)h+ 2

(
1− θ

)2Ei
[
|fi+1|2

]
h2.

(4.4.16)

Proof of Proposition 4.4.7 . Let i ∈ {0, · · · , N − 1}. First we estimate Zi. The mar-

tingale property of ∆Wi+1 yields

Zih = Ei
[
∆Wi+1Ai+1

]
= Ei

[
∆Wi+1(Ai+1 − Ei[Ai+1])

]
. (4.4.17)

7The previous explanation only justified the existence of Yi as a function from Ω to Rk. To obtain
that it is measurable, one should rather consider the map G : (a, y) 7→

(
a, y − θf(ti, a, y)h

)
, where

a = (x, z) ∈ Rd×k×d and f(t, a, y) = f(t, x, y, z). It is again seen to be strongly monotonous, so it is
invertible and Theorem 26.A asserts that G−1 is continuous (Lipschitz in fact), hence measurable.
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By the Cauchy-Schwartz inequality,

|Zi|2h ≤ d
{
Ei[A2

i+1]− Ei[Ai+1]2
}
. (4.4.18)

We now proceed with the estimation of Yi. We first rewrite

Yi = Ei[Ai+1] + θfih⇔ Yi − θfih = Ei[Ai+1]

and then square both sides of the RHS of the above equivalence to obtain

|Yi|2 = Ei[Ai+1]2 + 2θ 〈Yi, fi〉h− θ2|fi|2h2.

This simple manipulation allows us to take advantage of the monotonicity of f (see

(4.2.1)) and will be reused frequently. By the estimate of Remark 4.2.1, with an α > 0

to be chosen later, the previous equality leads to

|Yi|2 ≤Ei[Ai+1]2 + 2θ(Ly + α)|Yi|2h+ θB(i, α) +
3θL2

z

2α
|Zi|2h− θ2|fi|2h2,

where B(i, α) := (3L2h + 3L2
x|Xi|2h)/(2α). Now, for ε = 1/d, we combine the above

estimate with (4.4.18) to obtain

|Yi|2 + ε|Zi|2h ≤ (1− εd)Ei[Ai+1]2 + εdEi[A2
i+1]

+ 2θ(Ly + α)|Yi|2h+
3θL2

z

2α
|Zi|2h+ θB(i, α)− θ2|fi|2h2.

Reorganizing the terms leads to

(
1− 2θ(Ly + α)h

)
|Yi|2 +

(
ε− 3θL2

z

2α

)
|Zi|2h ≤ Ei[A2

i+1] + θB(i, α)− θ2|fi|2h2.

(4.4.19)

Using again Remark 4.2.1 with α′ > 0 we obtain

A2
i+1 ≤|Yi+1|2 + (1− θ)2(Ly + α′)|Yi+1|2h

+ (1− θ)3L2
z

2α′
|Zi+1|2h+ (1− θ)B(i+ 1, α′) + (1− θ)2|fi+1|2h2,
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which in turns leads to(
1− 2θ(Ly+α)h

)
|Yi|2 +

(
ε− 3θL2

z

2α

)
|Zi|2h

≤
(

1 + (1− θ)2(Ly + α′)h
)
Ei
[
|Yi+1|2

]
+ (1− θ)3L2

z

2α′
Ei
[
|Zi+1|2

]
h+ Hθ

i

(4.4.20)

+ θB(i, α) + (1− θ)Ei[B(i+ 1, α′)],

where

Hθ
i : =

(
1− θ

)2Ei
[
|fi+1|2

]
h2 − θ2|fi|2h2 (4.4.21)

Now, we choose α = 3dθL2
z (so that ε − 3θL2

z

2α
= 1

2d
) and α′ = 24d(1 − θ)L2

z (so that

(1− θ)3L2
z

2α′
≤ 1

16d
). Since h ≤ min{1, [4θ(Ly + 3dθL2

z)]
−1} it is true that 2θ(Ly + α)h ≤

1/2. We also observe that for x ∈ [0, 1/2], 1 ≤ 1/(1− x) ≤ 1 + 2x ≤ 2 and as a

consequence

|Yi|2 +
1

2d
|Zi|2h ≤

(
1 + 4θ(Ly + α)h

)(
1 + 2(1− θ)(Ly + α′)h

)
Ei
[
|Yi+1|2

]
+

1

8d
Ei
[
|Zi+1|2

]
h+ 2θB(i, α) + 2(1− θ)Ei

[
B(i+ 1, α′)

]
+ 2Hθ

i .

Defining c := 4θ(Ly + α) + 2(1− θ)(Ly + α′) + 8θ(Ly + α)(1− θ)(Ly + α′) we clearly

have

(
1 + 4θ(Ly + α)h

)(
1 + 2(1− θ)(Ly + α′)h

)
≤ 1 + ch.

We can now conclude to the announced estimate

|Yi|2 +
1

2d
|Zi|2h ≤

(
1 + ch)

(
Ei
[
|Yi+1|2

]
+

1

8d
Ei
[
|Zi+1|2

]
h
)

+ 2θB(i, α) + 2(1− θ)Ei[B(i+ 1, α′)] + 2Hθ
i , (4.4.22)

provided one passes the term 2θ2|fi|2h2 in 2Hθ
i to the LHS. This concludes the proof.
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4.4.5 Local discretization error

The schemes we propose in this work (tamed explicit and implicit-dominant) re-

quire a different argumentation with regard to the stability property (see (4.4.4)).

However, the analysis of the local discretization errors τi(Y ) and τi(Z) (see (4.4.5)) is

the same for both types of schemes, therefore in this section we carry it out for a gen-

eral θ ∈ [0, 1]. Later on, we give particular attention to the higher order approximation

case θ = 1/2 which corresponds to the trapezoidal rule.

We follow the notation of Subsection 4.4.2 and set, for i = 0, 1, . . . , N − 1, Ŷi =

Yi,(Yti+1 ,Z̄ti+1 ) and Ẑi = Zi,(Yti+1 ,Z̄ti+1 ); that is (Ŷi, Ẑi) is the solution to

Ŷi = Eti
[
Yti+1

+ (1− θ)f(ti+1, Xi+1, Yti+1
, Z̄ti+1

)h
]

+ θf(ti, Xi, Ŷi, Ẑi)h (4.4.23)

Ẑi = Eti
[∆Wti+1

h

(
Yti+1

+ (1− θ)f(ti+1, Xi+1, Yti+1
, Z̄ti+1

)h
)]
. (4.4.24)

Remark 4.4.8. We know from Proposition 4.4.7 that, for h ≤ min{1, [4θ
(
Ly +

3dθL2
z

)
]−1)}, the RV’s {(Ŷi, Ẑi)}i=0,··· ,N are well defined and square integrable. Further-

more, estimate (4.4.16), together with the growth assumption on f in (HY0), (4.4.1)

for Xi+1, Theorem 4.2.2 for Yti+1
and Corollary 4.3.6 for Z̄ti+1

, guarantee immediately

that for any p ≥ 2, there exists a constant c such that

max
i=0,...,N

E[|Ŷi|p] ≤ c (4.4.25)

This fact will be needed later in Section 4.5.

The next result estimates the one-step discretization errors τi(Y ) and τi(Z) of the

approximation in terms of the error process R (as defined in (4.4.12)). Afterward we

discuss the behavior of R itself. Following the notation above we have

Lemma 4.4.9. Let (HX0) and (HY0) hold. Then for any θ ∈ [0, 1] there exists a

constant c such that for any i ∈ {0, · · · , N − 1}

|Yti − Ŷi|2 + |Z̄ti − Ẑi|2h ≤ cEi
[(∫ ti+1

ti

R(s)ds
)2
]

+ c (1− θ)2Ei[|Xti+1
−Xi+1|2]h2 + c θ2|Xti −Xi|2h2.

Proof. Let i ∈ {0, · · · , N−1}. Recalling (4.4.11), (4.4.24) and that Θ̄ti := (Xti , Yti , Z̄ti)

125



we have

Z̄ti − Ẑi = Ei
[

∆Wti+1

h

(
(1− θ)

[
f(ti+1, Θ̄ti+1

)− f(ti+1, Xi+1, Yti+1
, Z̄ti+1

)
]
h+

∫ ti+1

ti

R(s)ds
)]

,

which by the Cauchy-Schwartz’s inequality and the Lipschitz property of x 7→ f(·, x, ·, ·)
leads to

h|Z̄ti − Ẑi|2 ≤ 2dEi
[( ∫ ti+1

ti

Rudu
)2]

+ 2d(1− θ)2L2
xEi
[
|Xti+1

−Xi+1|2
]
h2.

For the Y-part, similarly by recalling (4.4.10) and (4.4.23) we have

Yti − Ŷi =Ei
[ ∫ ti+1

ti

R(s)ds+ (1− θ)
(
f(ti+1, Θ̄ti+1

)− f(ti+1, Xi+1, Yti+1
, Z̄ti+1

)
)
h
]

+ θ
(
f(ti, Θ̄ti)− f(ti, Xi, Ŷi, Ẑi)

)
h

=Ei
[∫ ti+1

ti

R(s)ds+ (1− θ)
(
f(ti+1, Θ̄ti+1

)− f(ti+1, Xi+1, Yti+1
, Z̄ti+1

)
)
h

]
+ θ
(
f(ti, Xti , Yti , Z̄ti)− f(ti, Xi, Yti , Ẑi)

)
h

+ θ
(
f(ti, Xi, Yti , Ẑi)− f(ti, Xi, Ŷi, Ẑi)

)
h.

To obtain the estimate for |Yti − Ŷi|2, similarly as in the proof of Theorem 4.4.7, we

pass the last term in the RHS to the LHS, square both sides, expand the square on

the LHS, pass the cross term to the RHS and dominate it on the RHS using (4.2.1).

By collecting only the convenient terms in the LHS and using Assumption (HY0) on

the RHS we get

|Yti − Ŷi|2 ≤ 3Ei
[ ∫ ti+1

ti

R(s)ds
]2

+ 6 θ2L2
z|Z̄ti − Ẑi|2h2 + 2 θLy|Yti − Ŷi|2h

+ 6 θ2L2
x|Xti −Xi|2h2 + 3(1− θ)2L2

xEi[|Xti+1
−Xi+1|2]h2,

which implies, using the estimate for |Z̄ti − Ẑi|2, that

(1− 2θLyh)|Yti − Ŷi|2 ≤(3 + 12dθ2L2
zh)Ei

[( ∫ ti+1

ti

R(s)ds
)2]

+ 6 θ2L2
x|Xti −Xi|2h2

+ 3(1− θ)2L2
x(1 + 4dθ2L2

zh)Ei
[
|Xti+1

−Xi+1|2
]
h2.
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Noting that h is such that 2θLyh ≤ 1/2 and by combining the estimates for |Yti − Ŷi|2

and |Z̄ti − Ẑi|2 the sought result follows.

We now estimate the integral of the error function R (see (4.4.12)).

Lemma 4.4.10. Let (HX0), (HY0loc) hold. Then there exists c > 0, for any θ ∈ [0, 1]

and i ∈ {0, · · · , N − 1} such that

E
[(∫ ti+1

ti

R(s)ds
)2
]
≤c h3 + c hE

[ ∫ ti+1

ti

|Zs − Z̄ti |2ds+

∫ ti+1

ti

|Zs − Z̄ti+1
|2ds

]
.

Proof. Following from (4.4.12) we estimate R via RI and RE: using (HY0loc), Cauchy-

Schwarz’s inequality and Fubini’s theorems we have (recall that Θ = (X, Y, Z) and

Θ̄ti = (Xti , Yti , Z̄ti))

E
[(∫ ti+1

ti

RI(s)ds
)2
]

= E

[(∫ ti+1

ti

[f(s,Θs)± f(s,Xs, Yti , Zs)− f(ti, Θ̄ti)]ds

)2
]

≤ 2hE
[∫ ti+1

ti

3L2
y

(
1 + |Ys|2(m−1) + |Yti |2(m−1)

)
|Ys − Yti |2ds+ αi

]
≤ 2h

(∫ ti+1

ti

L2
yE
[
3
(
1 + |Ys|4(m−1) + |Yti |4(m−1)

)]1/2E[|Ys − Yti |4]1/2ds+ E[αi]

)
,

where αi = 3
∫ ti+1

ti

[
L2
t |s− ti|+ L2

x|Xs −Xti |2 + L2
z|Zs − Z̄ti|2

]
ds.

Using Theorem 4.2.2 and (4.3.23) to deal with the Y component, yields the estimate

E
[(∫ ti+1

ti

RI(s)ds
)2
]
≤ ch3+6hL2

zE
[ ∫ ti+1

ti

|Zs−Z̄ti|2ds
]
+6h2L2

x sup
ti≤s≤ti+1

E[|Xs−Xti|2].

Similar arguments allow a similar estimate for RE but with terms Z̄ti+1
and Xti+1

instead of Z̄ti and Xti . We conclude by recalling (4.4.2).

The trapezoidal integration case

Here, we refine the analysis of the local discretization error from Lemma 4.4.10

for the case θ = 1/2 in order to obtain better global error estimates. We drop the

Z-dependence in f due to lacking regularity results. Approximation (4.4.14) is found

by approximating the last integral on the RHS of (4.4.9) by a 1st order approximation

and so, it should be clear that at best the overall order of the scheme would be one

127



(in the next section we propose a candidate for higher order approximation of Z). We

point out nonetheless that many reaction-diffusion equations have a driver f that only

depends on Y . For ease of the presentation we also assume that f does not depend on

the forward process X and omit the time dependence (these can be easily extended).

We write, similarly to (4.4.10),∫ ti+1

ti

f(Ys)ds =
h

2

[
f(Yti) + f(Yti+1

)
]

+

∫ ti+1

ti

R(s)ds,

with

R(s) := f(Ys)−
1

2

[
f(Yti) + f(Yti+1

)
]
,

where, using integration by parts, it can be shown (see [76]) that

E
[( ∫ ti+1

ti

R(s)ds
)2
]
≤ h6

122
E
[

sup
ti≤t≤ti+1

|∂2
yyf(Yt)|2

]
. (4.4.26)

Hence, in the special case where the driver of FBSDE under consideration does not

depend on the process (Zt)0≤t≤T we can take full advantage of trapezoidal integration

rule provided that the second derivatives of f in the y variable has polynomial growth,

so that there exists a constant c for which

max
ti,ti+1∈π

E
[

sup
ti≤t≤ti+1

|∂2
yyf(Yt)|2

]
≤ c.

The result on the sum of local errors

In view of the above lemmas (as well as the estimate (4.4.1) and the path-regularity

Theorem 4.3.5), we can state the following estimates on the sum of the local discretiza-

tion errors, as appearing in the global error estimate (4.4.6) of Lemma 4.4.4.

Proposition 4.4.11. Let (HX0), (HY0loc) hold and h ≤ min{1, [4θ
(
Ly + 3dθL2

z

)
]−1}.

For the scheme (4.4.13)-(4.4.14) we have the following local error estimates:

i) For any θ ∈ [0, 1], there exists a constant c > 0 such that
∑N−1

i=0
τi(Y )
h

+τi(Z) ≤ ch.

ii) Take θ = 1/2 and scheme (4.4.13). Assume additionally that f ∈ C2 does not

depend on (t, x, z) and ∂2
yyf has at most polynomial growth, then there exists

c > 0 such that
∑N−1

i=0
τi(Y )
h
≤ ch4.
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Proof. Recall (4.4.5). The proof of case i) is a direct consequence of Lemma 4.4.9,

Lemma 4.4.10, estimate (4.4.1) and the path-regularity Theorem 4.3.5.

For the proof of case ii), remark that (4.4.23) is now independent of Z, and hence

using Lemma 4.4.9 in combination with (4.4.26) instead of Lemma 4.4.10 yields the

result.

4.5 Convergence of the implicit-leaning schemes (1/2 ≤
θ ≤ 1)

In this section, we complete the convergence proof of the theta scheme (4.4.13)-

(4.4.14) for θ ∈ [1/2, 1]. In view of the Fundamental Lemma and Proposition 4.4.11 it

boils down to the proof of the stability of the scheme. For the reader’s convenience, we

state immediately the main result while the rest of the section is devoted to its proof.

Theorem 4.5.1. Let (HX0), (HY0loc) hold and h ≤ min{1, [4θ
(
Ly + 3dθL2

z

)
]−1}. Let

γ ≥ 1/2 be the order of the approximation {Xi}i=0,...,N of X.

Then, for the scheme (4.4.13)-(4.4.14) we have:

i) For θ ∈ [1/2, 1], there exists a constant c such that ERRπ(Y, Z) ≤ ch1/2.

ii) Take θ = 1/2 and scheme (4.4.13). Assume that f ∈ C2, f(t, x, y, z) = f(y) and

∂2
yyf has at most polynomial growth, then there exists C > 0 s.th. maxi=0,...,N E[|Yti−
Yi|2]1/2 ≤ Chmin{7/4,γ}.

4.5.1 Size estimate for the theta-scheme, for 1/2 ≤ θ ≤ 1

We now show that for θ ≥ 1/2 the scheme cannot explode as h vanishes. These Lp

estimates will be useful in obtaining the stability of the scheme.

Proposition 4.5.2. Let (HX0), (HY0) hold, and h ≤ min{1, [4θ
(
Ly+3dθL2

z

)
]−1} and

let θ ∈ [1/2, 1]. Then for any p ≥ 1, there exists a constant c such that

max
i=0,...,N

E
[
|Yi|2p

]
+

N−1∑
i=0

E[ (|Zi|2h)p] ≤ c
(
1 + E[ |XN |2mp]

)
.
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Proof. Take i ∈ {0, · · · , N − 1}. Let Ii := |Yi|2 + 1
8d
|Zi|2h+ θ2|f(ti, Xi, Yi, Zi)|2h2. By

Proposition 4.4.7 and the fact that (1− θ)2 ≤ θ2, for θ ∈ [1/2, 1], we have

Ii +
3

8d
|Zi|2h ≤ echEi

[
Ii+1

]
+ Ei

[
βi
]
h, with βi := c+ c

(
|Xi|2 + |Xi+1|2

)
. (4.5.1)

As a consequence of Lemma 4.7.4 we know that, since βj ≥ 0,

Ii +
3

8d
Ei
[N−1∑
j=i

|Zj|2h
]
≤ ec T

(
Ei[IN ] +

N−1∑
j=i

Ei[βj]h
)
,

in particular, using Jensen’s inequality, we obtain further

|Ii|p ≤ 2p−1ec p T
(
Ei[|IN |p] + (N h)p−1

N−1∑
j=0

Ei[ |βj|p]h
)
.

This then implies, thanks to (HY0)

max
i=0,...,N

E[|Ii|p] ≤ c(1 + |XN |2mp) =⇒ max
i=0,...,N

E[|Yi|2 p] ≤ c(1 + |XN |2mp).

From (4.5.1) we also have

Ipi +
( 3

8d

)p
(|Zi|2h)p ≤

(
Ii +

3

8d
|Zi|2h

)p
≤ ec p hEi[Ipi+1] +

p∑
j=1

(
p

j

)(
echEi

[
Ii+1

])p−j(
Ei[βi]h

)j
,

so that, applying again Lemma 4.7.4 along with Hölder’s and Jensen’s inequalities we
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have

( 3

8d

)p
E
[N−1∑
i=0

(
|Zi|2h

)p]
≤ ec p TE[|IN |p] +

N−1∑
i=0

ec i h
p∑
j=1

(
p

j

)
E
[(
echEi

[
Ii+1

])p−j(
Ei[βi]h

)j]
≤ ec p TE[|IN |p] + ec p T

N−1∑
i=0

p∑
j=1

(
p

j

)(
E
[
|Ii+1|p

]) p−jp (E[|βi|p]
) j
p
h

≤ ec p TE[|IN |p] + ec p TT

p∑
j=1

(
p

j

)(
max

i=0,...,N
E
[
|Ii+1|p

]) p−jp (
max

i=0,...,N
E[ |βi|p]

) j
p
.

Due to (HY0) and the previous estimates we arrive, as required, at

E
[N−1∑
i=0

(
|Zi|2h

)p] ≤ c(1 + |XN |2mp).

4.5.2 Stability and convergence of the theta-scheme for 1/2 ≤
θ ≤ 1

We now study the stability of the scheme in the sense of (4.4.4). We fix i ∈
{0, . . . , N − 1} and estimate the distance between (Ŷi, Ẑi) (see (4.4.23)-(4.4.24)) and

(Yi, Zi) (see (4.4.13)-(4.4.14)) as a function of the distance between (Yti+1
, Z̄ti+1

) and

(Yi+1, Zi+1).

We use the notation δYi+1 = Yti+1
− Yi+1, δZi+1 := Z̄ti+1

− Zi+1, as well as

δfi+1 = f(ti+1, Xi+1, Yti+1
, Z̄ti+1

)− f(ti+1, Xi+1, Yi+1, Zi+1) and

δAi+1 = δYi+1 + (1− θ)δfi+1h.

Then, denoting by δ̂Yi = Ŷi − Yi, δ̂Zi = Ẑi − Zi, and δf̂i = f(ti, Xi, Ŷi, Ẑi) −
f(ti, Xi, Yi, Zi), we can write that (compare with (4.4.23), (4.4.24), (4.4.13) and (4.4.14))

δ̂Yi = Ei
[
δAi+1

]
+ θδf̂ih and δ̂Zi = Ei

[1

h
∆Wi+1δAi+1

]
.

131



Proposition 4.5.3. Let (HX0) and (HY0) hold. Then there exists a constant c for

any i ∈ {0, · · · , N − 1} and h ≤ min{1, [4θ
(
Ly + dθL2

z

)
]−1} such that

|δ̂Yi|2 +
1

2d
|δ̂Zi|2h ≤ (1 + ch)Ei

[
|δYi+1|2 +

1

8d
|δZi+1|2h

]
+Hθ

i ,

where

Hθ
i =

(
1− θ

)2Ei
[
|δfi+1|2

]
h2 − θ2Ei

[
|δf̂i|2

]
h2. (4.5.2)

Proof. This proof is very similar to that of Proposition 4.4.7 therefore we omit it.

In order to show convergence using Fundamental Lemma 4.4.4, we need to control

RS(H). For the fully implicit scheme (θ = 1) we have Hθ
i = −|δf̂i|2h2 ≤ 0 and

hence the implicit scheme is stable in the classical sense (of [16] or [17]) as we have

RS(H) ≤ 0. The next lemma provides, in our setting, a control on RS(H) for any

θ ≥ 1/2.

Lemma 4.5.4. Let (HX0), (HY0loc) hold and take the family {Hi}i=0,··· ,N−1 defined

in (4.5.2). Then for θ ≥ 1/2 there exists a constant c such that

RS(H) = max
i=0,...,N−1

E
[N−1∑
j=i

ec(j−i)hHθ
j

]
≤cE[|YtN − YN |4]

1
2h2 + cE[ |Z̄N − ZN |2]h2

+ c
(N−1∑

i=0

τi(Y )
) 1

2
h+ c

(N−1∑
i=0

τi(Z)
) 1

2
h.

Proof. Let i ∈ {0, · · · , N − 1}. Since 1/2 ≤ θ ≤ 1, we have (1− θ)2 ≤ θ2 and therefore

E
[N−1∑
j=i

ec(j−i)hHθ
j

]
≤ θ2E

[N−1∑
j=i

ec(j−i)h
(
|δfj+1|2 − |δf̂j|2

)
h2

]

= θ2E
[N−1∑
j=i

ec(j−i)h
(
|δfj+1|2 − |δfj + βj|2

)
h2

]

≤ θ2E
[N−1∑
j=i

ec(j−i)h
(
ech|δfj+1|2 − |δfj|2 − 2 〈δfj, βi〉 − βj2

)
h2

]

≤ θ2ec(N−i)hE
[
|δfN |2

]
h2 − 2θ2

N−1∑
j=i

ec(j−i)hE
[
〈δfj, βj〉

]
h2,
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where βi := δf̂j − δfj = f(ti, Xj, Ŷj, Ẑj) − f(ti, Xj, Yti , Z̄ti) and we used a telescopic

sum. Using now (HY0loc) yields

E[|δfN |2] ≤ cE[1 + |YtN |4(m−1) + |YN |4(m−1)]
1
2E[|YtN − YN |4]

1
2 + cE[ |Z̄N − ZN |2]

and

E[〈δfi, βi〉]h2 ≤ E[|δfi||βi|]h2 ≤E
[(
|δfi|Ly(1 + |Ŷi|m−1 + |Yti |m−1)

)2] 1
2E
[
|Ŷi − Yti |2

] 1
2h2

+ E
[(
Lz|δfi|

)2
] 1

2E
[
|Ẑi − Z̄ti |2

] 1
2h2

≤cE
[
B1
i

] 1
2 E[|Ŷi − Yti |2]

1
2h+ cE

[
B2
i

] 1
2 E[|Ẑi − Z̄ti |2h]

1
2h,

where B2
i := |Yti |2mh+ |Yi|2mh+ |Z̄ti |2h+ |Zi|2h and

B1
i := h2 + |Ŷi|4mh2 + |Yti |4mh2 + |Yi|4mh2 + (|Z̄ti |2h)2 + (|Zi|2h)2.

From Theorem 4.2.2, Corollary 4.3.6, Remark 4.4.8 and Proposition 4.5.2 we have, for

the first term of the above inequality

N−1∑
i=0

E
[
B1
i

] 1
2E
[
|Ŷi − Yti |2

] 1
2h ≤

(N−1∑
i=0

E
[
B1
i

] ) 1
2
(N−1∑

i=0

τi(Y )
) 1

2
h ≤ c

(N−1∑
i=0

τi(Y )
) 1

2
h

and similarly for the second term

N−1∑
i=0

E
[
B2
i

] 1
2 E[|Ẑi − Z̄ti|2h]

1
2h ≤ c

(N−1∑
i=0

τi(Z)
) 1

2
h.

The proof of the Theorem 4.5.1

By collecting the above results we can now prove Theorem 4.5.1.

Proof of Theorem 4.5.1. The proof is a combination of the Fundamental Lemma 4.4.4,

with Lemma 4.4.6, Proposition 4.4.11 and stability results obtained in this section,

namely Proposition 4.5.3 and Lemma 4.5.4.

We move to the proof of part ii), the case θ = 1/2. Since in this case f depends

only on y, a quick re-run of arguments of the Fundamental Lemma 4.4.4, shows there
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exists a constant c > 0 such that

max
i=0,...,N

E[|Yti − Yi|2] ≤ c
{
E[ |YtN − YN |2] +

N−1∑
i=0

τi(Y )

h

}
+ (1 + h)RS(H).

The first two terms on the RHS can be bounded by ch2γ + ch4, c > 0, using Lemma

4.4.6 and Proposition 4.4.11, respectively. By Lemma 4.5.4 there exists a constant

c > 0 such that

RS(H) ≤ cE[|YtN − YN |4]
1
2h2 + c

(N−1∑
i=0

τi(Y )
) 1

2
h,

and using again Lemma 4.4.6 and Proposition 4.4.11 yields RS(H) ≤ ch2γ+2 + ch7/2.

By joining these results the theorem’s conclusion follows.

4.5.3 Further remarks

Here, we discuss a true overall 2nd order scheme, namely a 2nd order discretization

for Z, and an intuitive variance reduction technique which we have used throughout

but not made formally explicit.

The candidate for 2nd order scheme

For the general case were driver depends on Z, the approximation for Zi, namely

(4.4.14), is not enough to obtain a higher order scheme as it is a 1st order approxi-

mation. The proper higher order scheme in its full generality follows by applying the

trapezoidal rule to all integrals present in (4.4.9); as is done for (4.4.8). With some

manipulation (left to the reader), we end up with the following approximation for Zi

(compare with (4.4.14)),

Zi =
2

h
Ei
[
∆Wti+1

(
Yti+1

+ (1− θ)f(ti, Xi+1, Yi+1, Zi+1)h
) ]
− Ei

[
Zi+1

]
,

with θ = 1/2, the terminal condition YN = g(XN), along with (4.4.13) and a suitable

approximation for ZT . An approximation for ZT is not trivial and can for instance be

found via Malliavin calculus. The general treatment of such a scheme is left for future

research.

134



Another type of 2nd order scheme can be found in [22], the approximation there is

based in Itô-Taylor expansions.

Controlling the variance of the scheme

If we use the notation set up in Subsection 4.4.4, the approximation (4.4.14) can

be written out as Zi = Ei [∆Wi+1Ai+1] /h. We point out that implementation wise it

is better to use the lower variance approximation (4.4.17) instead of (4.4.14), i.e. to

use

Zi =
1

h
Ei [∆Wi+1 (Ai+1 − Ei[Ai+1])] , i = 0, · · · , N − 1.

This does not lead to a relevant additional computation effort, as Ei[Ai+1] must be

computed for the estimation of the Yi component. To avoid a long analysis we make

some simplifying assumptions in order to better explain the gain: assume Xt = x+Wt

and that we are about to compute Z0 (a standard expectation); assume further (via

Doob-Dynkin Lemma) that A1 can be written as8 A1 = ϕ(X1) = ϕ(x + ∆W1) where

ϕ has some regularity so that

ϕ(x+ ∆W1) = ϕ(x) + ϕ′(x)(∆W1) +
1

2
ϕ′′(x∗)(∆W1)2,

where x∗ lies between x and x+ ∆W1. Then the Monte-Carlo (MC) estimator for Z0

from (4.4.14), withM samples of the normalN (0, 1) distribution given by {N λ}λ=1,...,M ,

and its Standard deviation (Std) are

Z
MC,(4.4.14)
0 =

1

M

M∑
λ=1

√
hN λ

h
ϕ
(
x+
√
hN λ

)
with Std ≈ |ϕ(x)|√

h
√
M
.

Using (4.4.17) instead of (4.4.14) to compute Z0 would produce the MC estimator and

its Std

Z
MC,(4.4.17)
0 =

1

M

M∑
λ=1

√
hN λ

h

(
ϕ
(
x+
√
hN λ

)
− ϕ(x)

)
with Std ≈ |ϕ

′(x)|√
M

.

8If the reader is aware of how conditional expectations in the BSDE framework are calculated, say
e.g. via projection over a basis of functions, having a function ϕ is expected.
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Compare now the standard deviation of both estimators. It is crucial for the stability

that the denominator of the variance of Z
MC,(4.4.17)
0 lacks that

√
h term. If M is kept

fixed then as h gets smaller we expect Z
MC,(4.4.14)
0 to blow up while Z

MC,(4.4.17)
0 will

remain controlled (assuming ϕ can be controlled9). This can be numerically confirmed

in [1].

We point out that this simple trick can be adapted to the scheme proposed in the

next section as well as to the computation of the 2nd order scheme proposed previously.

4.6 Convergence of a tamed explicit scheme.

Unlike the case θ ∈ [1/2, 1], when θ < 1/2, the local estimates of Proposition 4.4.7

cannot be extended to the global ones (as in Proposition 4.5.2). Consequently, we also

do not have a control over the stability remainder RS(H) (see Definition 4.4.2). To

overcome this difficulty, we consider a tamed version of the explicit scheme, which in

turn corresponds to a truncation procedure applied to the original BSDE.

Remark 4.6.1 (m > 1). In this section we focus exclusively on the case m > 1 in

Assumptions (HY0). The easier case m = 1 does not require taming and stability of

the scheme results from a straightforward adaptation of the proof of Proposition 4.6.5.

4.6.1 A tamed explicit scheme.

For any level L > 0, we define the thresholding function TL : R → R, x 7→
−L∨ x∧L. We denote similarly its extension as a function from Rd to Rd (projection

on the ball of radius L). We consider the following scheme: define YN := TLh
(
g(XN)

)
,

ZN := 0, and for i = N − 1, . . . , 0,

Yi := Ei
[
Yi+1 + f

(
ti+1, TKh(Xi+1), Yi+1, Zi+1

)
h
]
, (4.6.1)

Zi := Ei
[∆Wti+1

h

(
Yi+1 + f

(
ti+1, TKh(Xi+1), Yi+1, Zi+1

)
h
)]
, (4.6.2)

9In [35] it is shown for the locally Lipschitz driver case that ϕ is indeed a Lipschitz function of its
variables.
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where the levels Lh and Kh satisfy ec1T
(
L2
h + c2T + c2TK

2
h

)
≤ h−1/(m−1), with

c1 = 2
(
Ly + 12dL2

z + 2L2
y

)
and c2 = max

{ L2

4dL2
z

,
L2
x

4dL2
z

}
.

For h ≤ h∗, where h∗ satisfies ec1T c2T ≤ (h∗)−1/(m−1)/3 and h∗ ≤ 1/(32dL2
z) we can

take

Lh =
1√
3
e−

1
2
c1T
(1

h

) 1
2(m−1)

and Kh =
1√
3

e−
1
2
c1T

√
c2T

(1

h

) 1
2(m−1)

.

Here we present the main results of this section that states the convergence rate of

scheme (4.6.1)-(4.6.2). Its proof is postponed to the end of this section.

Theorem 4.6.2. Let (HX0), (HY0loc) hold and h ≤ h∗. Assume that the order γ of

the approximation {Xi}i=0,··· ,N of X is at least 1/2. Then for the controlled explicit

scheme (4.6.1)-(4.6.2), there exists a constant c such that ERRπ(Y, Z) ≤ c h1/2.

The idea is that with this control, one can not only obtain uniform bounds for the

scheme, but also a nice pathwise bound, ensuring that the output {Yi}i=0,··· ,N can be

controlled. In other words, we show that the bound on the initial condition propagates

throughout the whole scheme and hence the scheme is stable in the sense of (4.4.4)

where Hi = 0.

Note that this controlled scheme is not exactly the scheme (4.4.13)-(4.4.14) with

θ = 0. However it can be seen as the case θ = 0 with the functions TLh ◦ g and

f(·, TKh(·), ·, ·) instead of g and f , we can reuse the results of Section 4.4.

Because the scheme is controlled, we naturally compare first its output {(Yi, Zi)}i∈{0,...,N}
to (Y ′ti , Z̄

′
ti

)ti∈π, where (Y ′t , Z
′
t)t∈[0,T ] is the solution to the BSDE (4.1.2) with controlled

coefficients:

Y ′t = TLh
(
g(XT )

)
+

∫ T

t

f
(
u, TKh(Xu), Y

′
u, Z

′
u

)
du−

∫ T

t

Z ′udWu, t ∈ [0, T ].

(4.6.3)

In a second step, it will be enough to estimate the distance between the solution

(Y ′, Z ′) of the truncated BSDE (4.6.3) and the solution (Y, Z) of the original BSDE

(4.1.2) in order to conclude to the convergence of the scheme.

In line with Section 4.4 and 4.5 we denote set {Z̄ ′ti}ti∈π as in (4.3.20), Ŷi =
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Yi,(Y ′i+1,Z̄
′
i+1) and Ẑi = Zi,(Y ′i+1,Z̄

′
i+1) for i = 0, . . . , N − 1, more precisely

Ŷi := Ei
[
Y ′ti+1

+ f
(
ti+1, TKh(Xi+1), Y ′ti+1

, Z̄ ′ti+1

)
h
]
, (4.6.4)

Ẑi := Ei
[

∆Wti+1

h

(
Y ′ti+1

+ fh
(
ti+1, Xi+1, Y

′
ti+1

, Z̄ ′ti+1

)
h
)]

. (4.6.5)

4.6.2 Size analysis for the scheme

We now show that the tamed Euler scheme has the property that |Yi| ≤ h−1/(2m−2)

for i = 0, · · · , N . This is of course true for YN = TLh
(
g(XN)

)
by construction. In the

next two propositions we will show this bound propagates through time.

Proposition 4.6.3. Assume (HX0), (HY0) and that h ≤ 1/(32dL2
z). Then there exists

c > 0 such that if for a given i ∈ {0, . . . , N − 1} one has |Yi+1| ≤ h−1/(2m−2) then one

also has

|Yi|2 +
1

d
|Zi|2h ≤ (1 + c1h)Ei

[
|Yi+1|2 +

1

4d
|Zi+1|2h

]
+ c2h+ c2hEi

[
|TKh(Xi+1)|2

]
.

Proof. Take i ∈ {0, . . . , N−1}. We have seen in the proof of Proposition 4.4.7, equation

(4.4.20) that, since θ = 0,

|Yi|2 +
1

d
|Zi|2h ≤

(
1 + 2(Ly + α′)h

)
Ei
[
|Yi+1|2

]
+

3L2
z

2α′
Ei
[
|Zi+1|2

]
h+ Ei[B(i+ 1, α′)] +H0

i ,

where B(i+ 1, α′) := (3L2h+ 3L2
x|TKh(Xi+1)|2h)/2α′ and

H0
i = Ei

[
|fi+1|2

]
h2 = Ei

[
|f(ti+1, TKN (Xi+1), Yi+1, Zi+1)|2

]
h2.

Using (HY0) and the fact that |Yi+1|2(m−1)h ≤ 1, we have

|fi+1|2h2 ≤ 4L2h2 + 4L2
x|TKh(Xi+1)|2h2 + 4L2

y

[
|Yi+1|2(m−1)h

]
|Yi+1|2h+ 4L2

z|Zi+1|2h2

≤ 4L2h2 + 4L2
x|TKh(Xi+1)|2h2 + 4L2

y|Yi+1|2h+ 4L2
zh|Zi+1|2h,

so we have in the end

|Yi|2 +
1

d
|Zi|2h ≤

(
1 + 2

(
Ly + α′ + 2L2

y

)
h
)
Ei
[
|Yi+1|2

]
+
(3L2

z

2α′
+ 4L2

zh
)
Ei
[
|Zi+1|2

]
h

+
(3L2

2α′
+ 4L2h

)
h+

(3L2
x

2α′
+ 4L2

xh
)
Ei
[
|TKh(Xi+1)|2

]
h.
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Choose now α′ = 12dL2
z (so that 3L2

z/(2α
′) ≤ 1/(8d)) and combine with the restriction

h ≤ 1/(32dL2
z) (so that 4L2

zh ≤ 1
8d

). Taking c1 = 2
(
Ly + 12dL2

z + 2L2
y

)
and

c2 = max
{ 3L2

24dL2
z

+
4L2

32dL2
z

,
3L2

x

24dL2
z

+
4L2

x

32dL2
z

}
= max

{ L2

4dL2
z

,
L2
x

4dL2
z

}
,

and noting that 1/(4d) ≤ (1 + c1h)/(4d), we find the required estimate

|Yi|2 +
1

d
|Zi|2h ≤

(
1 + c1h

)
Ei
[
|Yi+1|2 +

1

4d
|Zi+1|2h

]
+ c2h+ c2hEi

[
|TKh(Xi+1)|2

]
.

We can then use this local bound to obtain the following pathwise bound.

Proposition 4.6.4. Let (HX0) and (HY0) hold. For any i ∈ {0, · · · , N − 1},

|Yi|2 +
1

4d
|Zi|2h+

3

4d
Ei
[N−1∑
j=i

|Zj|2h
]

≤ ec1(N−i)hEi
[
|YN |2

]
+ ec1(N−1−i)h

(N−1∑
j=i

c2h+ c2hEi
[
|TKh(Xi+1)|2

])
.

This implies in particular that |Yi| ≤ h−1/(2m−2).

Proof. The proof goes by induction. The case i = N is clear. If the estimate is true for

i+ 1, noting that |YN | ≤ Lh, |TKh(x)| ≤ Kh and ec1T
(
L2
h + c2T + c2TK

2
h

)
≤ h−1/(m−1),

we see that |Yi+1|2 ≤ h−1/(m−1). Then, combining the estimate of Proposition 4.6.3 and

the estimate for i+ 1 (from the induction assumption), as in Lemma 4.7.4, we obtain

the desired estimate for i.

In view of the previous proposition we can derive a similar estimate for the solution

(Y ′, Z ′) to (4.6.3). Namely, using (4.2.5) with α = 12dL2
z and combining it further with

(HY0), we have

|Y ′t |2 ≤ e2(Ly+12dL2
z)(T−t)Et

[
|TLh(g(XT ))|2 +

∫ T

t

1

16dL2
z

|f(u, TKh(Xu), 0, 0)|2du
]

≤ ec1(T−t)Et
[
|TLh(g(XT ))|2 +

∫ T

t

1

8dL2
z

(
L2 + L2

x|TKh(Xu)|2
)
du
]

≤ ec1T
(
L2
h + c2T + c2TK

2
h

)
≤
(1

h

) 1
m−1

,
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implying in particular that |Y ′ti | ≤ h−1/(2m−2) for all i.

These two estimates, ensuring that both Yi and Y ′ti are bounded by h−1/(2m−2) will

be useful in the analysis of the global error, since the explicit scheme is found to be

stable (in the sense of (4.4.4)) under this threshold.

4.6.3 Stability analysis for the scheme.

As previously, for any i ∈ {0, · · · , N − 1} we use the notation δYi+1 := Y ′ti+1
− Yi+1

and δZi+1 := Z̄ ′ti+1
− Zi+1, as well as δAi+1 := δYi+1 + δfi+1h where δfi+1 is given by

δfi+1 := f
(
ti+1, TKh(Xi+1), Y ′ti+1

, Z̄ ′i+1

)
− f

(
ti+1, TKh(Xi+1), Yi+1, Zi+1

)
.

Then, denoting δ̂Y i = Ŷi − Yi and δ̂Zi = Ẑi − Zi, we can write

δ̂Y i = Ei
[
δAi+1

]
and δ̂Zi = Ei

[1

h
∆Wti+1

δAi+1

]
.

We now proceed to show that, because the two inputs satisfy |Yi+1|, |Y ′ti+1
| ≤ h−1/(2m−2),

the scheme is stable in the sense that we can obtain the estimate (4.4.4) with Hi = 0.

Proposition 4.6.5. Assume (HX0) and (HY0loc). Then there exists a constant c for

any h ≤ min{1, 1/32dL2
z}, such that

|δ̂Y i|2 +
1

d
|δ̂Zi|2h ≤ (1 + ch)Ei

[
|δYi+1|2 +

1

4d
|δZi+1|2h

]
, i ∈ {0, · · · , N − 1}.

Proof. Let i ∈ {0, · · · , N − 1}. Just like for Proposition 4.5.3, the proof mimics the

computations of the proof of Proposition 4.4.7 with only a small adjustment for the

constants. However, a different argumentation for the term H0
i = |δfi+1|2h2 is required.

Using (HY0loc), h ≤ 1 and the bounds |Y ′ti+1
|2(m−1)h, |Y ′ti+1

|2(m−1)h ≤ 1, we have

|δfi+1|2h2 ≤ 2L2
y

(
1 + |Y ′ti+1

|2(m−1) + |Yi+1|2(m−1)
)
|Y ′ti+1

− Yi+1|2h2 + 2L2
z|Z̄ ′ti+1

− Zi+1|2h2

= 2L2
y

(
h+ |Y ′ti+1

|2(m−1)h+ |Yi+1|2(m−1)h
)
h|Y ′ti+1

− Yi+1|2 + 2L2
zh|Z̄ ′ti+1

− Zi+1|2h

≤ 6L2
yh|δYi+1|2 + 2L2

zh|δZi+1|2h.

The rest follows as in the proof of Proposition 4.4.7.
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4.6.4 Convergence of the scheme.

The convergence of the scheme is achieved by controlling the error committed by

the truncation procedure, ‖Y −Y ′‖S2 +‖Z−Z ′‖H2 , as a function of the time step, then

by controlling the numerical approximation (4.6.4), (4.6.5) of the solution (Y ′, Z ′) to

(4.6.3).

The Distance between (Yi, Zi)i and (Y ′ti , Z̄
′
ti

)i

We estimate this distance by combining Lemma 4.4.4 and the estimate for the sum

of the local discretization errors given by Proposition 4.4.11.

Since the controlled scheme (4.6.1)-(4.6.2) is the θ = 0 scheme with coefficient

f(·, ·, TKh(·), ·) having the same Lipschitz constants as f , the results of Lemma 4.4.9

and Lemma 4.4.10 are still valid with the same constants. The only difference is that

the path-regularity involved is now that of (Y ′, Z ′), but since TLh ◦ g is still Lipschitz,

Theorem 4.3.5 indeed applies to (Y ′, Z ′). So we are entitled to use Proposition 4.4.11

and conclude that

max
i=0,...,N

E[|Y ′ti − Yi|
2] +

N−1∑
i=0

E[|Z̄ ′ti − Zi|
2]h (4.6.6)

≤ c
(
E[|Y ′tN − YN |

2] + E[|Z̄ ′tN − ZN |
2]h
)

+ c
N−1∑
i=0

(1

h
τi(Y ) + τi(Z)

)
≤ ch. (4.6.7)

We note that the thresholds Lh and Kh have no effect in this estimation.

The Distance between (Y ′ti , Z̄
′
ti

)i and (Yti , Z̄ti)i

Finally, we estimate the distance between (Y ′ti , Z̄
′
ti

)i and (Yti , Z̄ti)i, which gathers

all the error induced by the taming. In order to estimate this error, we need to have an

estimation of the L2-distance between Xu and TKh(Xu) on the one hand, and g(XT )

and TLh
(
g(XT )

)
on the other. We give a general estimation for this below.

Proposition 4.6.6. Let ξ be a random variable in Lq for some q > 2, and L > 0.

Then we have

E[ |ξ − TL(ξ)|2] ≤ 4E[ |ξ|q]
( 1

L

)q−2
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Proof. Using the facts that TL(x) = x for |x| ≤ L and that |TL(ξ)| ≤ |ξ|, together

with the Hölder and the Markov inequalities, we have

E[|ξ − TL(ξ)|2] = E[|ξ − TL(ξ)|21{|ξ|≥L}] ≤ 4E[|ξ|21{|ξ|≥L}]

≤ 4E[|ξ|q]
2
qP[|ξ| ≥ L]1−

2
q ≤ 4E[|ξ|q]

2
q

(E[|ξ|q]
Lq

)1− 2
q

= 4E[|ξ|q]
( 1

L

)q(1− 2
q

)

Now, via Jensen’s inequality we have

|Z̄ti − Z̄ ′ti |
2h =

∣∣∣∣1hEi[
∫ ti+1

ti

Zudu
]
− 1

h
Ei
[ ∫ ti+1

ti

Z ′udu
]∣∣∣∣2 h ≤ Ei

[ ∫ ti+1

ti

|Zu − Z ′u|2du
]
,

from which it clearly follows that

max
i=0,...,N

E[|Yti − Y ′ti |
2] +

N−1∑
i=0

E[|Z̄ti − Z̄ ′ti |
2]h ≤ sup

t∈[0,T ]

E
[
|Yt − Y ′t |2

]
+ E

[ ∫ T

0

|Zu − Z ′u|2du
]
.

From the a priori estimate (4.2.6) we have

sup
t∈[0,T ]

E[|Yt − Y ′t |2] + E
[ ∫ T

0

|Zu − Z ′u|2du
]

≤ c
(
E[|g(XT )− TLN (g(XT ))|2] + E

[ ∫ T

0

|f
(
u,Xu, Y

′
u, Z

′
u

)
− f

(
u, TKN (Xu), Y

′
u, Z

′
u

)
|2du

])
≤ c
(
E[|g(XT )− TLN (g(XT ))|2] + L2

x

∫ T

0

E[|Xu − TKN (Xu)|2]du
)

≤ c
(

4
( 1

Lh

)2m−2

E[ |g(XT )|2m] +
( 1

Kh

)2m−2

4L2
x

∫ T

0

E[|Xu|2m]du
)
,

thanks to Proposition 4.6.6. Now, since X ∈ S2m (Theorem 4.2.2), g is of linear growth,

and Lh and Kh are of order h−1/(2m−2), we can conclude that

max
i=0,...,N

E[|Yti − Y ′ti|
2] +

N−1∑
i=0

E[|Z̄ti − Z̄ ′ti |
2]h ≤ ch. (4.6.8)

The proof of the Theorem 4.6.2

By collecting the above results we can now prove Theorem 4.6.2.
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Proof of Theorem 4.6.2. Estimate (4.6.8) controls the distance between the solution

{(Yti , Z̄ti)}ti∈π to the original BSDE (4.1.2) and the solution {(Y ′ti , Z̄
′
ti

)}ti∈π to the

truncated one (4.6.3). Then, estimate (4.6.6) controls the error of numerically approx-

imating the truncated BSDE via scheme (4.6.1), (4.6.2). This estimate follows via the

Fundamental Lemma 4.4.4 combined with Lemma 4.4.6 for the error of the terminal

condition, Proposition 4.4.11 for the control on the sum of local errors τi(Y ) and τi(Z)

and finally Proposition 4.6.5 implies that Hi is zero and hence that RS(H) = 0.

Combining all these estimates produces sought conclusion ERRπ(Y, Z) ≤ ch1/2.

4.7 Technical details and additional results

4.7.1 Motivating example

Before we state the main result we recall a result on the behavior of Gaussian

random variables (which we do not prove, but the reader is invited to try, in any case

see Lemma 4.1 in [43]). The notation and probability spaces we work with in this

section are as stated in Section 4.2.

Lemma 4.7.1. Let (Ω,F ,P) be a probability space and let Z : Ω→ R be an F/B(R)-

measurable mapping with standard normal distribution. Then for any x ∈ [0,∞) it

holds that

P[ |Z| ≥ x ] ≥ 1

4
xe−x

2

.

The statement of Lemma 4.1.1 follows from the next lemma.

Lemma 4.7.2. Let πN denote the uniform grid of the time interval [0, 1] with N + 1

points and step size h := 1/N , where N ∈ N is an even number; t = 1/2 is common

to all grids πN . Let (Y, Z) be the unique solution to (4.1.3) with driver f(y) := −y3

and terminal condition ξ := W 1
2
∈ Lp(F1) for any p ≥ 1.

Denote by {Y (N)
i }i∈{0,··· ,N} the Euler approximation of (Yt)t∈[0,1] defined via (4.1.4)

on the grid πN ; denote by Y
(N)
1
2

the approximation at the time point t = 1/2 (corre-

sponding to i = N/2).

i) For i ∈ {N
2
, · · · , N}, on the set {ω : ξ(ω) ≥ 2

√
N} it holds that |Yi(ω)| ≥

22N−i
√
N ,

ii) limN→∞ E[ |Y (N)
1
2

| ] = +∞.
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Proof. The first thing to remark is that no conditional expectation needs to be com-

puted for the scheme (4.1.4) for i ∈ {N/2, · · · , N} because ξ = W 1
2

is Ft-adapted for

any t ∈ [1/2, 1]. So the scheme’s approximations up to Y
(N)
1
2

can be written as

Y
(N)
N = W 1

2
, Y

(N)
N−1 = ψ(W 1

2
), Y

(N)
N−2 = ψ

(
ψ(W 1

2
)
)
, · · · , Y

(N)
N
2

= ψ◦(N/2)(W 1
2
),

where ψ(x) := x − hx3 and ψ◦(n) denotes the composition of ψ with itself n-times

(n ∈ N).

Proof of Part i) In this first step we fix N and drop the superscript (N) from Y (N).

We work on the event that ξ = YN ≥ 2
√
N . We have first

YN−1 = EN−1[YN − Y 3
Nh] = YN(1− Y 2

Nh).

Observe that Y 2
N ≥ 22N which implies (1−Y 2

Nh) ≤ (1−22) < 0. Hence (since YN > 0)

YN−1 = YN(1− Y 2
Nh) ≤ −2

√
N(22 − 1) ≤ −22

√
N < 0.

Next, since YN−1 < 0, Y 2
N−1 ≥ 24N which implies 1− Y 2

N−1h ≤ (1− 24) < 0. Hence

YN−2 = YN−1(1− Y 2
N−1h) = −YN−1(Y 2

N−1h− 1) ≥ 22
√
N(24 − 1) ≥ 222

√
N.

Proceeding by induction we can easily show that

|Yi| ≥ 22N−i
√
N, i =

N

2
, · · · , N.

Indeed, assume Yi+1 ≥ 22N−i−1√
N (note that in the light of the above calculations the

negative case is analogous). Then

Yi = Yi+1(1− Y 2
i+1h) ≤ 22N−i−1√

N
(

1−
(

22N−i−1
)2)
≤ −22N−i

√
N.

Proof of Part ii): It follows easily from Lemma 4.7.1 that

P
[
|W 1

2
| ≥ 2

√
N
]
≥
√

2

2

√
Ne−8N .

Then, using Part i) (to go from the 1st to the 2nd line) and the above remark (on
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the 3rd line) we have

lim
N→∞

E[ |Y (N)
1
2

| ] = lim
N→∞

E[1{ξ≥2
√
N}|Y

(N)
1
2

|+ 1{ξ<2
√
N}|Y

(N)
1
2

| ] ≥ lim
N→∞

E[1{ξ≥2
√
N}|Y

(N)
1
2

| ]

≥ lim
N→∞

E[1{ξ≥2
√
N}2

2N−N/2
√
N ]

= lim
N→∞

22N/2
√
N P[ |W 1

2
| ≥ 2

√
N ] ≥ lim

N→∞
2(2N/2)

√
2

2
Ne−8N = +∞.

4.7.2 Basics of Malliavin’s calculus

We briefly introduce the main notation of the stochastic calculus of variations also

known as Malliavin’s calculus. For more details, we refer the reader to [63], for its

application to BSDEs we refer to [44]. Let S be the space of random variables of the

form

ξ = F
(

(

∫ T

0

h1,i
s dW 1

s )1≤i≤n, · · · , (
∫ T

0

hd,is dW d
s )1≤i≤n)

)
,

where F ∈ C∞b (Rn×d), h1, · · · , hn ∈ L2([0, T ];Rd), n ∈ N. To simplify notation, assume

that all hj are written as row vectors. For ξ ∈ S, we define D = (D1, · · · , Dd) : S →
L2(Ω× [0, T ])d by

Di
θξ =

n∑
j=1

∂F

∂xi,j

(∫ T

0

h1
tdWt, . . . ,

∫ T

0

hnt dWt

)
hi,jθ , 0 ≤ θ ≤ T, 1 ≤ i ≤ d,

and for k ∈ N its k-fold iteration by D(k) = (Di1 · · ·Dik)1≤i1,··· ,ik≤d. For k ∈ N, p ≥ 1

let Dk,p be the closure of S with respect to the norm

‖ξ‖pk,p= E
[
‖ξ‖pLp +

k∑
i=1

‖|D(k)]ξ|‖p
(Hp)i

]
.

D(k) is a closed linear operator on the space Dk,p. Observe that if ξ ∈ D1,2 is Ft-
measurable then Dθξ = 0 for θ ∈ (t, T ]. Further denote Dk∞ = ∩p>1Dk,p.

We also need Malliavin’s calculus for Rm valued smooth stochastic processes. For

k ∈ N, p ≥ 1, denote by Lk,p(Rm) the set of Rm-valued progressively measurable

processes u = (u1, · · · , um) on [0, T ]× Ω such that

i) For Lebesgue-a.a. t ∈ [0, T ], u(t, ·) ∈ (Dk,p)m;
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ii) [0, T ] × Ω 3 (t, ω) 7→ D(k)u(t, ω) ∈ (L2([0, T ]1+k))d×n admits a progressively

measurable version;

iii) ‖u‖pk,p= ‖u‖
p
Hp +

∑k
i=1 ‖Diu ‖p

(Hp)1+i
<∞.

Note that Jensen’s inequality gives10 for all p ≥ 2

E
[( ∫ T

0

∫ T

0

|DuXt|2du dt
) p

2
]
≤ T p/2−1

∫ T

0

‖DuX‖pHpdu. (4.7.1)

We recall a result from [44] concerning the rule for the Malliavin differentiation of Itô

integrals which is of use in applications of Malliavin’s calculus to stochastic analysis.

Theorem 4.7.3 (Theorem 2.3.4 in [44]). Let (Xt)t∈[0,T ] ∈ H2 be an adapted process

and define Mt :=
∫ t

0
XrdWr for t ∈ [0, T ]. Then, X ∈ L1,2 if and only if Mt ∈ D1,2 for

any t ∈ [0, T ]. And moreover for any 0 ≤ s, t ≤ T we have

DsMt = Xs1{s≤t}(s) + 1{s≤t}(s)

∫ t

s

DsXrdWr. (4.7.2)

4.7.3 A particular Gronwall lemma

We state here a “discrete Gronwall lemma” of some kind, particularly useful for

the numerical analysis of BSDEs, and which we use extensively in this work.

Lemma 4.7.4. Let ai, bi, ci, be such that ai, bi ≥ 0, ci ∈ R for i = 0, 1, . . . , N . Assume

that, for some constant c > 0 and h > 0, we have

ai + bi ≤ (1 + ch)ai+1 + ci, for i = 0, 1, . . . , N − 1. (4.7.3)

Then the following inequality holds for every i

ai +
N−1∑
j=i

bj ≤ ec(N−i)haN +
N−1∑
j=i

ec(j−i)hcj.

Proof. The estimate is clearly true for i = N − 1 (even for i = N in fact). Then, for

10The reason behind this last inequality is that within the BSDE framework the usual tools to
obtain a priori estimates yield with much difficulty the LHS while with relative ease the RHS.
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any i ≤ N − 2, if it is true for i+ 1, by multiplying both sides by ech we find that

echai+1 + ech
N−1∑
j=i+1

bj ≤ ec(N−i)haN +
N−1∑
j=i+1

ec(j−i)hcj

Summing this inequality with (4.7.3) and noting that
∑N−1

j=i+1 bj ≤ ech
∑N−1

j=i+1 bj due

to the positivity of the bj terms gives the sought estimate for any i.

4.7.4 Preservation of the monotonicity condition by differen-

tiation and mollification.

This subsection brings precisions to section 4.3, theorems 4.3.1 and 4.3.5.

Earlier versions of our results were making use of an assumption called (HY0+) at the

time when the research was being carried (not reported here), in order to negotiate

two technicalities in the proof of theorems 4.3.1 and 4.3.5. Namely, we needed to

guarantee that the driver of the differentiated BSDE is again a monotone driver (in

theorem 4.3.1), and that the same goes for mollified drivers (in the proof of theorem

4.3.5). That assumption was eventually removed, as we found it was not necessary.

The computations proving our claims without resorting to (HY0+) are in fact relatively

simple, so we did not include them in the main text, but we give them below.

The driver of the differentiated BSDE is again monotone.

For the proof of theorem 4.3.1 we need to show that

F : (ω, r, χ,Υ,Γ) 7→
(
∇xf

)
(r,Θt,x

r ) · χ+
(
∇yf

)
(r,Θt,x

r ) ·Υ +
(
∇zf

)
(r,Θt,x

r ) · Γ

satisfies the monotonicity condition. For this, we fix (ω, r, χ,Γ) and denote for simplic-

ity F (Υ) = F (ω, r, χ,Υ,Γ) and
(
∇yf

)
(Yr) =

(
∇yf

)
(r,Θt,x

r ). Using the definition of F ,

the linearity of
(
∇yf

)
(Yr), a consequence of the definition of the (Fréchet) derivative,
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and finally the monotonicity of f , we have

〈Υ′ −Υ|F (Υ′)− F (Υ)〉 = 〈Υ′ −Υ|∇yf(Yr).Υ
′ −∇yf(Yr).Υ〉

= 〈Υ′ −Υ|∇yf(Yr).(Υ
′ −Υ)〉

=

〈
Υ′ −Υ

∣∣∣ lim
ε→0

f
(
Yr + ε(Υ′ −Υ)

)
− f

(
Yr
)

ε

〉

= lim
ε→0

〈
Υ′ −Υ

∣∣∣f(Yr + ε(Υ′ −Υ)
)
− f

(
Yr
)

ε

〉

= lim
ε→0

1

ε

〈(
Yr + ε(Υ′ −Υ)

)
− Yr

ε

∣∣∣f(Yr + ε(Υ′ −Υ)
)
− f(Yr)

〉
= lim

ε→0

1

ε2
〈(
Yr + ε(Υ′ −Υ)

)
− Yr|f

(
Yr + ε(Υ′ −Υ)

)
− f(Yr)

〉
≤ lim

ε→0

1

ε2
Ly
∣∣(Yr + ε(Υ′ −Υ)

)
− Yr

∣∣2
= Ly |Υ′ −Υ|2 .

So, as wanted, F is a monotone function of Υ (uniformly in (ω, r, χ,Γ), and one can

take the same constant Ly as for f .

The mollified drivers are again monotone.

In the proof of theorem 4.3.5 we need to show that the mollified drivers fn are also

monotone.

Consider a regularising kernel (hn)n∈N. That is, we have hn ≥ 0, hn ∈ C∞b ,∫
Rk h

ndx = 1, and
∫
Rk\B(0,ε)

hndx −→ 0 when ε −→ 0. We define fn = f ∗ hn,

that is fn(y) =
∫
Rk f(y − x)hn(x)dx. Note that for notational simplicity we wrote

f(y) for f(t, x, y, z). Using the definition of fn, the linearity of the integral and the

monotonicity of f , we see that

〈y′ − y|fn(y′)− fn(y)〉 =

〈
y′ − y

∣∣∣ ∫ [f(y′ − x)− f(y − x)]hn(x)dx

〉
=

∫ 〈
y′ − y

∣∣∣f(y′ − x)− f(y − x)
〉
hn(x)dx

≤ Ly|y′ − y|2
∫
hn(x)dx

= Ly|y′ − y|2.
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So for every n, fn is monotone with the same constant Ly as f . So (HY0) is satisfied

uniformly in n in the mollification argument, as claimed.

4.7.5 Discrete Hp estimate from the continuous Hp estimate.

In corollary 4.3.6 we state a discrete Hp-style estimate for Z̄ which is then used in

section 4.5.

To prove it, we first prove a discrete Sp-style estimate for Z̄ under (HY0loc), result-

ing from an Sp estimate for Z, and then use it to obtain the desired discrete Hp-style

estimate for Z̄ (as it holds for discrete estimates, just like for the continuous ones, that

“Sp implies Hp”). This therefore relies on an Sp estimate for Z (theorem 4.3.5), which

is an advanced result. However it is a far more basic result that Z ∈ Hp (basic in the

sense that it does not require the fine differentiability analysis and the results that

stem from it, in particular that Z ∈ Sp), so there ought to be a proof of the discrete

Hp-style estimate for Z̄ following directly from the Hp estimate for Z. Such a proof

exist, and we give it below.

Start by remarking that it follows from the definition of Z̄ti that

|Z̄ti |2h ≤ Ei
(∫ ti+1

ti

|Zu|2du
)
.

Now, using this, then Jensen’s inequality (on Ei(·) only) to get the second line, the

linearity of E[·] and E[Ei(·)] = E[·] for the third line, then the elementary inequality
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∑
api ≤ (

∑
ai)

p to get the fourth, we have

E
[N−1∑
i=0

(
|Z̄ti |2h

)p] ≤ E

[
N−1∑
i=0

(
Ei
(∫ ti+1

ti

|Zu|2du
))p]

≤ E

[
N−1∑
i=0

Ei
((∫ ti+1

ti

|Zu|2du
)p)]

≤ E

[
N−1∑
i=0

(∫ ti+1

ti

|Zu|2du
)p]

≤ E

[(N−1∑
i=0

∫ ti+1

ti

|Zu|2du

)p]

= E

[(∫ T

0

|Zu|2du

)p]
≤ C.

So the discrete Hp-style estimate for Z̄ is proved, using only the Hp estimate for Z.

4.7.6 Well-definedness of the implicit schemes (θ > 0).

In subsection 4.4.4 we justified why, when θ > 0 and the scheme only defines Yi

implicitly, it is indeed true that Yi is well defined. More precisely, we wanted to ensure

that the equation Yi = Ei [Ai+1] + θf(ti, Xi, Yi, Zi)h defines indeed a unique random

variable Yi in L2(Fi).

Define bi = Ei [Ai+1] ∈ Rk and ai = (Xi, Zi) ∈ Rd × Rk,d. In subsection 4.4.4, for a

fixed ω, we defined the map F = Fω = Fai(ω) : y 7→ y − θf
(
ti, Xi(ω), y, Zi(ω)

)
h. We

showed, using theorem 26.A p557 of [80] that since F is strongly monotone increasing,

it is invertible, and in particular we could define Yi(ω) = F−1
ai(ω)

(
bi(ω)

)
. This defines

Yi(ω) for each ω but does not guarantee the measurability of Yi. So we don’t know

if we define an element of L0(Fi). It is a consequence of theorem 26.A from [80] that

Fai(ω) is continuous (even Lipschitz), hence measurable, but this says nothing about

the measurability of ω 7→ F−1
ai(ω)

(
bi(ω)

)
. What we need is a joint measurability.

For this, the (standard) idea is to define rather the mapG from E =
(
Rd×Rk,d

)
×Rk

to itself,

G : (a, y) 7→
(
a, y − θf(ti, a, y)h

)
,
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where f(ti, a, y) = f(ti, x, y, z) for a = (x, z). It is not difficult to check that, like Fω

previously, G is strongly monotone increasing (here the scalar product is that on E).

This implies that for every (a, b) ∈ E we can define (a′, y) = G−1(a, b), and G−1 is

Lipschitz (hence continuous, hence measurable). Actually, since the first component

of G maps (a, y) to a, the first component of the inverse maps (a, b) to a, so a′ = a

above. Now, denoting by P2 the second projection, from E to Rk, we can define for

each ω

Yi(ω) = P2

(
G−1

(
ai(ω), bi(ω)

))
.

Note that it solvesG(ai(ω), Yi(ω)) = (ai(ω), bi(ω)), so Yi(ω)−θf
(
ti, Xi(ω), Yi(ω), Zi(ω)

)
h =

bi(ω) as we want. The point is that now Yi = P2 ◦G−1 ◦ (ai, bi), so it is indeed Fi mea-

surable (because ω 7→ (ai(ω), bi(ω)) is).

So Yi is well defined as an element of L0(Fi), and the proposition 4.4.7 proves that

Yi ∈ L2.

Note that it doesn’t seem easy to recast the above argumentation directly into the

functional space L2, defining Yi directly as a point of that space rather than defining it

as a function, ω by ω. For Lipschitz coefficients f , both argumentations are possible.

But since f can have polynomial growth here, the map

F : Y 7→ Y − θf(ti, Xi, Y, Zi)h

is not necessarily valued in L2. This is why we wrote the argument ω-wise.

151



152



References

[1] S. Alanko and M. Avellaneda. Reducing variance in the numerical solution of
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