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Abstract

These notes contain the verifications that that our abstract assumptions are satisfied
for the main three examples of taming considered in the paper.

This guarantees that for all the examples treated in section 6, we are in the frame-
work we developped and the convergence is proven. It also allows to track down the
final convergence rate.
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1 The assumptions on the drivers

1.1 Assumptions on the driver of the BSDE
(Gr) There exist m ∈ N∗ and constants Kt,Ky,Kz ≥ 0 such that, for all (t, y, z) ∈

[0, T ]× Rn × Rn×d,

|f(t, y, z)| ≤ Kt +Ky|y|m +Kz|z| . (1.1)

That is, f has polynomial growth in y of degree m and linear growth in z.

(Mon) There exist a constant My ∈ R such that for all t, y, y′, z,

〈y′ − y, f(t, y′, z)− f(t, y, z)〉 ≤My|y′ − y|2 . (1.2)

That is, f is monotone (“decreasing”) in the variable y, with monotonicity con-
stant My, which can be, but is not necessarily, strictly negative.

(Reg) There exist constants Lt, Lz ≥ 0 such that for all t, t′, y, z′,

|f(t′, y, z′)− f(t, y, z)| ≤ Lt|t′ − t|
1
2 + Lz|z′ − z| . (1.3)

That is, f is 1
2 -Hölder in time and Lipschitz in z.

(RegY) There exists a constant Ly ≥ 0 such that for all t, y, y′, z,

|f(t, y′, z)− f(t, y, z)| ≤ Ly
(
1 + |y′|m−1 + |y|m−1

)
|y′ − y| . (1.4)

That is, f is locally Lipschitz in y with local Lipschitz constant growing polyno-
mially with degree m− 1, with the m from (Gr) .

(MonGr) There exist constants M̄t, M̄z ≥ 0 and M̄y ∈ R such that for all t, y, z,

〈y, f(t, y, z)〉 ≤ M̄t + M̄y|y|2 + M̄z|z|2 . (1.5)

Remark 1.1. If f satisfies (Mon) and (Gr) , then for all t, y, z and for any α > 0,
we have

〈y, f(t, y, z)〉 = 〈y − 0, f(t, y, z)− f(t, 0, z)〉+ 〈y, f(t, 0, z)〉
≤My|y − 0|2 + |y|

(
Kt +Kz|z|

)
≤ (My + α)|y|2 +

K2
t

2α
+
K2
z

2α
|z|2 .

Hence we can take M̄t =
K2

t

2α and M̄z =
K2

z

2α |z|
2 arbitrarily small, while taking M̄y =

My + α. We also note that by combining (Mon) and (Reg) we obtain the general
estimate

〈y′ − y, f(t, y′, z′)− f(t, y, z)〉 = 〈y′ − y, f(t, y′, z′)− f(t, y, z′)〉
+ 〈y′ − y, f(t, y, z′)− f(t, y, z)〉

≤My|y′ − y|2 + |y′ − y|Lz|z′ − z|

≤ (My + α)|y′ − y|2 +
L2
z

4α
|z′ − z|2 .

Compare with Remark 2.1 in [?].
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1.2 Assumptions on the tamed driver of the scheme
(TGr) There exist Kh

t , Kh
y and Kh

z ≥ 0 such that, for all (t, y, z) ∈ [0, T ]× Rn × Rn×d,

|fh(t, y, z)| ≤ Kh
t +Kh

y |y|+Kh
z |z| .

The constants Kh
t , Kh

y and Kh
z may depend on h but in such a way that (Kh

t )2h,
(Kh

y )2h and Kh
z are bounded in h.

(TMonGr) There exist M̄h
t , M̄

h
z ≥ 0 and M̄h

y ∈ R such that, for all (t, y, z) ∈ [0, T ] × Rn ×
Rn×d,

〈y, f(t, y, z)〉 ≤ M̄h
t + M̄h

y |y|2 + M̄h
z |z|2 .

The constants M̄h
t , M̄

h
y , M̄

h
z may depend on h, but are bounded in h.

(TReg) There exist Lht , Lhz ≥ 0 such that, for all t, t′, y, z, z′,

|fh(t′, y, z′)− fh(t, y, z)| ≤ Lht |t′ − t|
1
2 + Lhz |z′ − z| .

Lht and Lhz may depend on h, but in a bounded way.
(TRegY) There exist Lhy ≥ 0 and a function R(regY) such that |R(regY)| satisfies (TCvg)

such that for all t, y, y′, z,

|fh(t, y′, z)− fh(t, y, z)| ≤ Lhy |y′ − y|+R(regY)(t, y′, y, z).

Lhy may depend on h, but in such a way that (Lhy)2h is bounded in h.

(TMon) There exists Mh
y ∈ R and a function R(mon) satisfying (TCvg) such that for all

t, y, y′, z,〈
y′ − y, fh(t, y′, z)− fh(t, y, z)

〉
≤Mh

y |y′ − y|2 +R(mon)(t, y′, y, z) .

Mh
y may depend on h, but in a bounded way.

We need to ensure that fh → f as h → 0. This is in some sense a consistency
condition, ensuring that the output of the scheme converges to the solution to the
correct BSDE, and not a BSDE with a different driver. We introduce for this Rh =
f − fh. Also, we need the remainders R(regY) and R(mon) to vanish sufficiently fast,
so as not to prevent convergence of the scheme. The following assumptions guarantees
that Rh and R converge to 0, where R is any of the remainders R(regY) and R(mon).

(TCvg) One of the following holds.
1. There exist constants C ≥ 0, p, q ≥ 1 and α > 0 such that for any y′, y, z

|Rh(y, z)| ≤ C
(
1 + |y|q + |z|p

)
hα

R(t, y′, y, z) ≤ C
(
1 + |y′|q + |y|q + |z|p

)
hα.

2. There exist constants C ≥ 0, p, q ≥ 1, r0 > 0 and β > 0 such that, with
r(h) = r0h

−β , for any y′, y, z

|Rh(y, z)| ≤ C
(
1 + |y|q + |z|q

)
1{|f(y,z)|>r(h)}

R(t, y′, y, z) ≤ C
(
1 + |y′|q + |y|q + |z|p

)
1{|f(t,y′,z)|>r(h) or |f(t,y,z)|>r(h)}.

3. There exist constants C ≥ 0, p, q ≥ 1, r0 > 0 and γ > 0 such that, with
r(h) = r0h

−γ , for any y′, y, z

|Rh(y, z)| ≤ C
(
1 + |y|q + |z|p

)
1{|y|>r(h)}

R(t, y′, y, z) ≤ C
(
1 + |y′|q + |y|q + |z|p

)
1{|y′|>r(h) or |y|>r(h)}.
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2 Verification that the usual tamed drivers fit in our
framework

2.1 Verifications for the multiplicative taming
Consider a radius r(h) = r0h

−α. The multiplicative taming is given by

fh(t, y, z) = χh(y)f(t, y, z), where χh(y) =
1

1 + F (y)r(h)−1
.

Several choices are possible for the function F . We consider the four following ones.

(a) F (y) = |f(0, y, 0)|.
(b) F (y) = |f(0,y,0)−f(0,0,0)|

|y| 1{y 6=0}.

(c) F (y) = |y|m.
(d) F (y) = |y|m−1.

Before starting, let us notice that we have 0 ≤ χh(y) ≤ 1 and also that

1− χh(y) =
F (y)r(h)−1

1 + F (y)r(h)−1
= χh(y)F (y)r(h)−1 ≤ F (y)r(h)−1.

2.1.1 Verification of (TGr)

Using (TReg) if there is a t or z dependence, we have first

|fh(t, y, z)| ≤ χh(y)|f(t, y, z)− f(0, y, 0)|+ χh(y)|f(0, y, 0)|

≤ 1×
(
LtT

1
2 + Lz|z|

)
+ χh(y)|f(0, y, 0)|.

Here we need to distinguish the cases.

Case (a).

χh(y)|f(0, y, 0)| = |f(0, y, 0)|
1 + F (y)r(h)−1

=
|f(0, y, 0)|

1 + |f(0, y, 0)|r(h)−1
≤ r(h).

So we have in the end

|fh(t, y, z)| ≤
(
LtT

1
2 + r(h)

)
+ 0 + Lz|z|.

We take Kh
t = LtT

1
2 + r(h), Kh

y = 0 and Kh
z = Lz. Recalling that r(h) = r0h

−α, the
condition (Kh

t )2h bounded as h→ 0 is equivalent to α ≤ 1
2 .

Case (b).

χh(y)|f(0, y, 0)| = χh(y)|f(0, y, 0)− f(0, 0, 0)|+ χh(y)|f(0, 0, 0)|

≤ |f(0, y, 0)− f(0, 0, 0)|
1 + |f(0,y,0)−f(0,0,0)|

|y| 1{y 6=0}r(h)−1
+ |f(0, 0, 0)|

≤ |y|r(h) + |f(0, 0, 0)|.

So we have in the end

|fh(t, y, z)| ≤
(
LtT

1
2 + |f(0, 0, 0)|

)
+ r(h)|y|+ Lz|z|.

We take Kh
t = LtT

1
2 + |f(0, 0, 0)|, Kh

y = r(h) and Kh
z = Lz. This time, the condition

to check is that (Kh
y )2h is bounded as h→ 0, and this is again equivalent to α ≤ 1

2 .
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Case (c). Using (Gr) we see that

χh(y)|f(0, y, 0)| = |f(0, y, 0)|
1 + |y|mr(h)−1

≤ Kt +Ky|y|m

1 + |y|mr(h)−1
≤ Kt +Kyr(h).

So we have in the end

|fh(t, y, z)| ≤
(
LtT

1
2 +Kt +Kyr(h)

)
+ 0 + Lz|z|.

We take Kh
t = LtT

1
2 + Kt + Kyr(h), Kh

y = 0 and Kh
z = Lz. Again, (Kh

t )2h bounded
as h→ 0 is equivalent to α ≤ 1

2 .

Case (d). Using (Gr) again we see that

χh(y)|f(0, y, 0)| = |f(0, y, 0)|
1 + |y|m−1r(h)−1

≤ Kt +Ky|y|m

1 + |y|m−1r(h)−1
≤ Kt +Kyr(h)|y|.

So we have in the end

|fh(t, y, z)| ≤
(
LtT

1
2 +Kt

)
+Kyr(h)|y|+ Lz|z|.

We take Kh
t = LtT

1
2 + Kt, Kh

y = Kyr(h) and Kh
z = Lz. Again, (Kh

y )2h bounded as
h→ 0 is equivalent to α ≤ 1

2 .

We have therefore verified (TGr) in the four cases.

2.1.2 Verification of (TMonGr)

We use the fact that f satisfies (MonGr) , as well as χh(y) ∈ [0, 1], to write〈
y, fh(t, y, z)

〉
= χh(y) 〈y, f(t, y, z)〉

≤ χh(y)
(
M̄t + M̄y|y|2 + M̄z|z|2

)
≤ M̄t + χh(y)M̄y|y|2 + M̄z|z|2

≤ M̄h
t + M̄h

y |y|2 + M̄h
z |z|2

where M̄h
t = M̄t, M̄h

z = M̄z and M̄h
y = max(0, M̄y). These constants do not depend

on h, so they work for (TMonGr) (they are bounded as h→ 0).

2.1.3 Verification of (TReg)

Here again, we use the fact that f satisfies (Reg) , as well as χh(y) ∈ [0, 1], to
write

|fh(t′, y, z′)− fh(t, y, z)| = χh(y)|f(t′, y, z′)− f(t, y, z)| ≤ Lt|t′ − t|
1
2 + Lz|z′ − z|.

So we take Lht = Lt and Lhz = Lz and (TReg) is satisfied.

2.1.4 Verification of (TRegY)

We write

fh(t, y′, z)− fh(t, y, z) = χh(y′)f(t, y′, z)− χh(y)f(t, y, z)

= χh(y′)χh(y)
(
f(t, y′, z)− f(t, y, z)

)
+R(regY)(t, y, y′, z),
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where

R(regY)(t, y, y′, z) := χh(y′)
(
1− χh(y)

)
f(t, y′, z)−

(
1− χh(y′)

)
χh(y)f(t, y, z).

We first estimate the “good term”, that will give the Lipschitz-in-Y regularity for
fixed h, and then will estimate the remainder term. Using (TRegY) , we have

|χh(y′)χh(y)
(
f(t, y′, z)− f(t, y, z)

)
| ≤ χh(y′)χh(y)Ly

(
1 + |y′|m−1 + |y|m−1

)
|y′ − y|

≤ Ly
(
1 + χh(y′)|y′|m−1 + χh(y)|y|m−1

)
|y′ − y|.

To estimate the terms χh(y)|y|m−1 we need to distinguish cases. We start with the
easier cases (c) and (d).

Case (c).

χh(y)|y|m−1 =
|y|m−1

1 + |y|m−1r(h)−1
≤ r(h).

So we take Lhy := Ly(1 + 2r(h)). And (Lhy)2h is bounded iff α ≤ 1
2 .

Case (d).

χh(y)|y|m−1 =
|y|m−1

1 + |y|mr(h)−1
≤

{
r(h) if |y| ≥ 1

1 if |y| ≤ 1
≤ 1 + r(h).

So we take Lhy := Ly(3 + 2r(h)). And (Lhy)2h is bounded iff α ≤ 1
2 .

Now, cases (a) and (b) require an extra assumption on f if we want to go on with a
general driver f . Namely, we assume that “|y|m is dominant in f ”, that is to say : there
exist R ≥ 1 and ky ≥ 0 such that for all y : |y| ≥ R, |f(0, y, 0)| ≥ ky|y|m. Notice that
in our numerical examples, we worked with the drivers that are polynomials of degree
m = 2 or 3, and that this assumption is satisfied for any polynomial in y. Therefore, it
is proven that for the examples of drivers we used and for the taming applied to them,
the resulting drivers fh fit in our framework.

Case (a).

χh(y)|y|m−1 =
|y|m−1

1 + |f(0, y, 0)|r(h)−1
≤


|y|m−1

ky|y|m
r(h) if |y| ≥ R ≥ 1

Rm−1 if |y| ≤ R
≤ Rm−1 +

1

ky
r(h).

So we take Lhy := Ly
(
1 + 2Rm−1 + 2

ky
r(h)

)
. And (Lhy)2h is bounded iff α ≤ 1

2 .

Case (b).

χh(y)|y|m−1 =
|y|m−1

1 + |f(0,y,0)−f(0,0,0)|
|y| 1{y 6=0}r(h)−1

≤


|y|m

|f(0, y, 0)− f(0, 0, 0)|
r(h) if |y| ≥ R′

(R′)m−1 if |y| ≤ R′
,

where R′ ≥ R is chosen such that for |y| ≥ R′, |f(0, y, 0)| ≥ ky|y|m ≥ |f(0, 0, 0)| +
1
2ky|y|

m. This way, |f(0, y, 0)−f(0, 0, 0)| ≥ |f(0, y, 0)|−|f(0, 0, 0)| ≥ 1
2ky|y|

m. We then
have

χh(y)|y|m−1 ≤


2

ky
r(h) if |y| ≥ R′

(R′)m−1 if |y| ≤ R′
≤ (R′)m−1 +

2

ky
r(h).

So we take Lhy := Ly
(
1 + 2(R′)m−1 + 4

ky
r(h)

)
. And (Lhy)2h is bounded iff α ≤ 1

2 .
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In conclusion, the “good term” is indeed bounded from above by Lhy |y′ − y| and
(Lhy)2h remain bounded as h→ 0. It remains to estimate the remainder term.

We recall before starting that χh(y) ∈ [0, 1] and that

1− χh(y) =
F (y)r(h)−1

1 + F (y)r(h)−1
= χh(y)F (y)r(h)−1 ≤ F (y)r(h)−1.

Then, we estimate

|R(regY)(t, y, y′, z)| =
∣∣χh(y′)

(
1− χh(y)

)
f(t, y′, z)−

(
1− χh(y′)

)
χh(y)f(t, y, z)

∣∣
≤ χh(y′)

(
1− χh(y)

)
|f(t, y′, z)|+

(
1− χh(y′)

)
χh(y) |f(t, y, z)|

≤
{

1× F (y)× |f(t, y′, z)|+ F (y′)× 1× |f(t, y, z)|
}
r(h)−1.

Now, we use (Gr) and (RegY) to claim that F (y) ≤ C(1+ |y|m). For this we separate
again the cases.
Case (a) F (y) = |f(0, y, 0)| ≤ Kt +Ky|y|m ≤ C(1 + |y|m).

Case (b) F (y) = |f(0,y,0)−f(0,0,0)|
|y| 1{y 6=0} ≤ Ly(1 + |y|m−1) ≤ C(1 + |y|m).

Case (c) F (y) = |y|m ≤ C(1 + |y|m).
Case (d) F (y) = |y|m−1 ≤ C(1 + |y|m).
In the above, we have used |y|p ≤ 1 + |y|q for q ≥ p. Using again (Gr) we therefore
have

|R(regY)(t, y, y′, z)| ≤ C
{(

1 + |y|m
)(

1 + |y′|m + |z|
)

+
(
1 + |y′|m

)(
1 + |y|m + |z|

)}
r(h)−1

≤ C
{

1 + |y|2m + |y′|2m + |z|2
}
hα.

To obtain the last estimate we have used several times the inequality ab ≤ a2 + b2.
Therefore, (TRegY) is verified.

2.1.5 Verification of (TMon)

We first write

fh(t, y, z) = f(t, y, z) + (χh(y)− 1)f(t, y, z)

= f(t, y, z)− F (y)r(h)−1χh(y)f(t, y, z).

Then, using (Mon) for f ,〈
y′ − y, fh(t, y′, z)− fh(t, y, z)

〉
= 〈y′ − y, f(t, y′, z)− f(t, y, z)〉
−
〈
y′ − y, F (y′)χh(y′)f(t, y′, z)− F (y)χh(y)f(t, y, z)

〉
r(h)−1

≤My |y′ − y|
2

+R(mon)(t, y′, y, z),

where

R(mon)(t, y′, y, z) = −
〈
y′ − y, F (y′)χh(y′)f(t, y′, z)− F (y)χh(y)f(t, y, z)

〉
r(h)−1.

We now estimate R(mon) similarly to what we did to verify (TRegY) , using
χh(y) ≤ 1 and F (y) ≤ C(1 + |y|m).

|R(mon)(t, y′, y, z)| ≤ |y′ − y|
[
F (y′)|f(t, y′, z)|+ F (y)|f(t, y, z)|

]
r(h)−1

≤ C
(
|y′|+ |y|

)[(
1 + |y′|m

)(
1 + |y′|m + |z|

)
+
(
1 + |y|m

)(
1 + |y|m + |z|

)]
hα

≤ C
[
1 + |y′|4m + |y|4m + |z|2

]
hα.
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Again, the last inequality resulted from using several Young inequalities and |y|p ≤
1 + |y|q for q ≥ p. Remark in particular that z only appears in a term the form
(|y′|+ |y|)(1 + |y′|m + |y|m)|z| = ab with b = |z|.

Therefore, (TMon) is verified.

This completes the verification that, when a general driver f is transformed into fh
by a multiplication by a taming factor χh, the resulting fh satisfies (Gr) , (TMonGr)
, (TReg) (TRegY) and (TMon) .

2.1.6 Verification of (TCvg)

Rh(t, y, z) = f(t, y, z)− fh(t, y, z) = f(t, y, z)(1− χh(y)) = f(t, y, z)χh(y)F (y)r(h)−1.

So, using as before F (y) ≤ C(1 + |y|m),∣∣Rh(t, y, z)
∣∣ ≤ F (y)|f(t, y, z)|r(h)−1

≤ C(1 + |y|m)(1 + |y|m + |z|)hα

≤ C(1 + |y|2m + |z|2)hα.

Therefore fh satisfies (TCvg) with the criterion 1.
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2.2 Verifications for the outer tamings
Consider a radius r(h) = r0h

−β . The outer taming is given by

fh(t, y, z) = Th
(
f(t, y, z)

)
,

where Th is essentially a projection on the ball of Rn of center 0 and radius r(h).
Specifically, we can consider only the following two choices.

• The (pure) projection : Th(f) = f
max(1,|f |r(h)−1) = r(h)f

max(r(h),|f |) .

• A smoothed projection : Th(f) = f
1+|f |r(h)−1 = r(h)f

r(h)+|f | .

Notice some general properties of Th : |Th(f)| ≤ |f | and |Th(f)| ≤ r(h), for all
f ∈ Rn. The pure projection also satisfies Th(f) = f for |f | ≤ r(h).

Notice that for both the case of the standard projection (a) and the case of the partic-
ular smoothed projection (b), the taming can be written multiplicatively, fh(t, y, z) =
χh(t, y, z)f(t, y, z). Indeed, we have

Th(f) =
1

max(1, |f |r(h)−1)
f and Th(f) =

1

1 + |f |r(h)−1
f

in cases (a) and (b), respectively.
Case (a), the standard projection, can therefore be viewed as a generalization of

what we did for the verifications that the multiplicatively tamed drivers fit in our
framework, the generalization being two-fold : first, we consider a factor χh(t, y, z)
instead of just χh(y), second, we have to deal with max(1, x) instead of 1 + x.

For case (b), this second generalization is non-existent. And if we consider a driver
depending only on y, as we do in all our examples, we see that the outer taming (b)
was already treated as the multiplicative taming (a). So let us ignore this case and
focus only on the standard projection, in this subsection.

From now on, T = Th is the standard projection on the ball of radius r = r(h).

2.2.1 Verification of (TGr)

By very construction,

|fh(t, y, z)| =
∣∣Th(fh(t, y, z)

)∣∣ ≤ r(h).

So we take Kh
t = r(h), Kh

y = 0 and Kh
z = 0. We have (Kh

t )2h bounded as h → 0 iff
β ≤ 1

2 .

2.2.2 Verification of (TMonGr)

We write 〈
y, fh(t, y, z)

〉
= χh(t, y, z) 〈y, f(t, y, z)〉

≤ χh(t, y, z)
(
M̄t + M̄y|y|2 + M̄z|z|2

)
≤ M̄t + χh(t, y, z)M̄y|y|2 + M̄z|z|2

≤ M̄h
t + M̄h

y |y|2 + M̄h
z |z|2

where M̄h
t = M̄t, M̄h

z = M̄z and M̄h
y = max(0, M̄y). These constants do not depend

on h, so they work for (TMonGr) (they are bounded as h→ 0).
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2.2.3 Verification of (TReg)

Here, rather than going into potentially brutal computations, it is easier to remem-
ber that, since Th is a projection on a ball, it is 1-Lipchitz. At least, I believe it should
be, for visual reasons. We can however prove easily that it is 2-Lipschitz.

<digression> For f and f ′ in Rn, we have 3 cases to consider : they are both inside
the ball of radius r, both are not, or only one of them is not. If they are both inside
the ball, then |T (f ′)− T (f)| = |f ′ − f |, which is good. If both of them are not,

|T (f ′)− F (f)| =
∣∣∣∣ rf ′|f ′| − rf

|f |

∣∣∣∣ =

∣∣∣∣r|f |f ′ − r|f ′|f|f ′||f |

∣∣∣∣ =

∣∣∣∣r|f |(f ′ − f) + r(|f ′| − |f ′|)f
|f ′||f |

∣∣∣∣
≤ r|f ||f ′ − f |

|f ′||f |
+
r ||f ′| − |f ′|| |f |

|f ′||f |
=

r

|f ′|
|f ′ − f |+ r

|f ′|
||f ′| − |f ′||

≤ r

|f ′|
|f ′ − f |+ r

|f ′|
|f ′ − f | ≤ 2|f ′ − f |,

using the reverse triangle inequality and r < |f ′|. If only one of them is not, by
symmetry, we can assume |f ′| > r ≥ |f |. Then,

|T (f ′)− F (f)| =
∣∣∣∣ rf ′|f ′| − f

∣∣∣∣ =

∣∣∣∣ rf ′|f ′| − |f |f|f |
∣∣∣∣ =

∣∣∣∣r|f |f ′ − |f ′||f |f|f ′||f |

∣∣∣∣ =

∣∣∣∣ (r − |f ′|)|f |f ′ + |f ′||f |(f ′ − f)

|f ′||f |

∣∣∣∣
≤ |(r − |f

′|)| |f ||f ′|
|f ′||f |

+
|f ′||f | |f ′ − f |
|f ′||f |

= (|f ′| − r) + |f ′ − f | ≤ 2|f ′ − f |,

since |f | ≤ r < |f ′| implies that 0 < |f ′| − r ≤ |f ′| − |f | ≤ ||f ′| − |f || ≤ |f ′ − f |.
</digression>

Using (Reg) we have∣∣fh(t′, y, z′)− fh(t, y, z)
∣∣ =

∣∣Th(f(t′, y, z′)
)
− Th

(
f(t, y, z)

)∣∣
≤ 2 |f(t′, y, z′)− f(t, y, z)|

≤ 2Lt|t′ − t|
1
2 + 2Lz|z′ − z|.

So (TReg) is satisfied with Lht = 2Lt and Lhz = 2Lz.

2.2.4 Verification of (TRegY)

Given that the outer taming by projection can be viewed as a generalization of the
multiplicative taming, one approach is to verify (TRegY) by similar estimations. As
previously, we write

fh(t, y′, z)− fh(t, y, z) = χh(t, y′, z)f(t, y′, z)− χh(t, y, z)f(t, y, z)

= χh(t, y′, z)χh(t, y, z)
(
f(t, y′, z)− f(t, y, z)

)
+R(regY)(t, y, y′, z),

where

R(regY)(t, y, y′, z) := χh(t, y′, z)
(
1− χh(t, y, z)

)
f(t, y′, z)−

(
1− χh(t, y′, z)

)
χh(t, y, z)f(t, y, z).

We first estimate the “good term”, that will give the Lipschitz-in-Y regularity for
fixed h, and then will estimate the remainder term. Using (TRegY) , we have

|χh(t, y′, z)χh(t, y′, z)
(
f(t, y′, z)− f(t, y, z)

)
| ≤ χh(t, y′, z)χh(t, y′, z)Ly

(
1 + |y′|m−1 + |y|m−1

)
|y′ − y|

≤ Ly
(
1 + χh(t, y′, z)|y′|m−1 + χh(t, y′, z)|y|m−1

)
|y′ − y|.
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To estimate the terms χh(t, y, z)|y|m−1 we need to introduce the assumption that
“|y|m is dominant in f , uniformly in t and z” : there exist ky ≥ 0 and R ≥ 1 such that,
for all y : |y| ≥ R, for t and z, |f(t, y, z)| ≥ ky|y|m.

χh(t, y, z)|y|m−1 =
|y|m−1

max(1, |f(t, y, z)|r(h)−1)
≤


|y|m−1

ky|y|m
r(h) if |y| ≥ R ≥ 1

Rm−1 if |y| ≤ R
≤ Rm−1 +

1

ky
r(h).

So we take Lhy := Ly
(
1 + 2Rm−1 + 2

ky
r(h)

)
. And (Lhy)2h is bounded iff β ≤ 1

2 .

It remains to estimate the remainder term. We note before starting that χh(t, y, z) ∈
[0, 1] and that since, for x ≥ 0, max(1, x)− 1 ≤ x, we have

1− χh(t, y, z) =
max(1, |f(t, y, z)|r(h)−1)− 1

max(1, |f(t, y, z)|r(h)−1)
≤ χh(t, y, z)|f(t, y, z)|r(h)−1 ≤ |f(t, y, z)|r(h)−1.

Then, we estimate

|R(regY)(t, y, y′, z)| =
∣∣χh(t, y′, z)

(
1− χh(t, y, z)

)
f(t, y′, z)−

(
1− χh(t, y′, z)

)
χh(t, y, z)f(t, y, z)

∣∣
≤ χh(t, y′, z)

(
1− χh(t, y, z)

)
|f(t, y′, z)|+

(
1− χh(t, y′, z)

)
χh(t, y, z) |f(t, y, z)|

≤
{

1× |f(t, y, z)| × |f(t, y′, z)|+ |f(t, y′, z)| × 1× |f(t, y, z)|
}
r(h)−1.

Using (Gr) we therefore have

|R(regY)(t, y, y′, z)| ≤ 2|f(t, y, z)||f(t, y′, z)|r(h)−1

≤ C
{(

1 + |y′|m + |z|
)(

1 + |y|m + |z|
)}
r(h)−1

≤ C
{

1 + |y|2m + |y′|2m + |z|2
}
hβ .

To obtain the last estimate we have used several times the inequality ab ≤ a2 + b2.
Therefore, (TRegY) is verified.

The above estimation followed the template of multiplicative tamings but is subop-
timal here. Instead, let us use the fact that the projection Th leaves the ball of radius
r(h) invariant to obtain a more appropriate estimate.

Using the fact that T (f) = f if |f | ≤ r, we write

|fh(t, y′, z)− fh(t, y, z)| = |f(t, y′, z)− f(t, y, z)| 1{|f(t,y′,z)|≤r(h) and |f(t,y,z)|≤r(h)}

+ |fh(t, y′, z)− fh(t, y, z)| 1{|f(t,y′,z)|>r(h) or |f(t,y,z)|>r(h)}.

The first term is the “good term”. Using (RegY) we see that

|f(t, y′, z)− f(t, y, z)| 1{|f(t,y′,z)|≤r(h) and |f(t,y,z)|≤r(h)}

≤ Ly
(
1 + |y′|m−1 + |y|m−1

)
|y′ − y| 1{|f(t,y′,z)|≤r(h) and |f(t,y,z)|≤r(h)}

≤ Ly
(
1 + |y′|m−11{|f(t,y′,z)|≤r(h)} + |y|m−11{|f(t,y,z)|≤r(h)}

)
|y′ − y|.

It now remains to argue, using the fact that “ |y|m is dominant in f , uniformly in t
and z”, that when f(t, y, z) is not too large, y cannot be too large either (since the
assumption implies that for large y, f(t, y, z) must be large). To be precise, we know
that there exist ky ≥ 0 and R ≥ 1 such that, for all y such that |y| ≥ R, for all t and

z, |f(t, y, z)| ≥ ky|y|m. Consider now R′ = max
(
R,
(

1
ky
r(h)

) 1
m

)
≥ R. For |y| > R′, we

have

r(h) < ky|y|m ≤ |f(t, y, z)|.
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Hence,

1{|f(t,y,z)|≤r(h)} = 1{|f(t,y,z)|≤r(h)} 1{|y|≤R′} + 1{|f(t,y,z)|≤r(h)} 1{|y|>R′}

= 1{|f(t,y,z)|≤r(h)} 1{|y|≤R′} + 0

≤ 1{|y|≤R′}.

Consequently, since R′ ≥ R ≥ 1,

Ly

(
1 + |y′|m−11{|f(t,y′,z)|≤r(h)} + |y|m−11{|f(t,y,z)|≤r(h)}

)
≤ Ly

(
1 + |y′|m−11{|y′|≤R′} + |y|m−11{|y|≤R′}

)
≤ Ly

(
1 + (R′)m−1 + (R′)m−1

)
≤ Ly

(
1 + 2(R′)m

)
≤ Ly

(
1 +

2

ky
r(h)

)
=: Lhy .

And (Lhy)2h is bounded iff β ≤ 1
2 .

The second term is the remainder,

R(regY)(t, y′, y, z) =
(
Th
(
f(t, y′, z)

)
− Th

(
f(t, y, z)

))
1{|f(t,y′,z)|>r(h) or |f(t,y,z)|>r(h)}

Using the fact that Th is 2-Lipschitz, then (RegY) , we have

|R(regY)(t, y′, y, z)| ≤ 2|f(t, y′, z)− f(t, y, z)| 1{|f(t,y′,z)|>r(h) or |f(t,y,z)|>r(h)}

≤ 2Ly
(
1 + |y′|m−1 + |y|m−1

)
|y′ − y| 1{|f(t,y′,z)|>r(h) or |f(t,y,z)|>r(h)}

≤ C
(
1 + |y′|2m + |y|2m

)
1{|f(t,y′,z)|>r(h) or |f(t,y,z)|>r(h)}.

So R(regY) satifies (TCvg) with the criterion 2.

2.2.5 Verification of (TMon)

Here again, given that the outer taming by projection can be viewed as a gener-
alization of the multiplicative taming, one approach is to verify (TMon) by similar
estimations.

We first write

fh(t, y, z) = f(t, y, z) + (χh(t, y, z)− 1)f(t, y, z)

= f(t, y, z)−Rh(t, y, z).

Then, using (Mon) for f ,〈
y′ − y, fh(t, y′, z)− fh(t, y, z)

〉
= 〈y′ − y, f(t, y′, z)− f(t, y, z)〉
−
〈
y′ − y, (χh(t, y′, z)− 1)f(t, y′, z)− (χh(t, y, z)− 1)f(t, y, z)

〉
≤My |y′ − y|

2
+R(mon)(t, y′, y, z),

where

R(mon)(t, y′, y, z) = −
〈
y′ − y, (χh(t, y′, z)− 1)f(t, y′, z)− (χh(t, y, z)− 1)f(t, y, z)

〉
.
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We now estimate R(mon) similarly to what we did to verify (TRegY) .

|R(mon)(t, y′, y, z)| ≤ |y′ − y|
[
(1− χh(t, y′, z))|f(t, y′, z)|+ (1− χh(t, y, z))|f(t, y, z)|

]
≤ |y′ − y|

[
|f(t, y′, z)|r(h)−1|f(t, y′, z)|+ |f(t, y, z)|r(h)−1|f(t, y, z)|

]
≤ (|y′|+ |y|)

[
|f(t, y′, z)|2 + |f(t, y, z)|2

]
r(h)−1

≤ C
(
|y′|+ |y|

)[(
1 + |y′|m + |z|

)2
+
(
1 + |y|m + |z|

)2]
hβ

≤ C
(
|y′|+ |y|

)[
1 + |y′|2m + |y|2m + |z|2

]
hβ

≤ C
[
1 + |y′|4m + |y|4m + |z|4

]
hβ .

Again, the last inequality resulted from using several Young inequalities and |y|p ≤
1 + |y|q for q ≥ p. Remark in particular that z appears with a power 4, which is not so
good.

Therefore, (TMon) is verified.

This paragraph follows the 2nd and 3rd paragraph of the next subsubsection, using
an estimation of Rh(t, y, z) more appropriate to the projection. So it probably should
be read afterwards. As we have written above already,

fh(t, y, z) = f(t, y, z)−Rh(t, y, z).

Then, using (Mon) for f ,〈
y′ − y, fh(t, y′, z)− fh(t, y, z)

〉
= 〈y′ − y, f(t, y′, z)− f(t, y, z)〉
−
〈
y′ − y,Rh(t, y′, z)−Rh(t, y, z)

〉
≤My |y′ − y|

2
+R(mon)(t, y′, y, z),

where

R(mon)(t, y′, y, z) = −
〈
y′ − y,Rh(t, y′, z)−Rh(t, y, z)

〉
.

With a force as brute as before, but using now the better estimate for Rh, we have

|R(mon)(t, y′, y, z)| ≤ |y′ − y|
[
|Rh(t, y′, z)|+ |Rh(t, y, z)|

]
≤ C(|y′|+ |y|)

[(
1 + |y′|m + |z|

)
1{|f(t,y′,z)|>r(h)} +

(
1 + |y|m + |z|

)
1{|f(t,y,z)|>r(h)}

]
≤ C

(
|y′|+ |y|

)[
1 + |y′|m + |y|m + |z|

]
1{|f(t,y′,z)|>r(h) or |f(t,y,z)|>r(h)}

≤ C
[
1 + |y′|2m + |y|2m + |z|2

]
1{|f(t,y′,z)|>r(h) or |f(t,y,z)|>r(h)}.

2.2.6 Verification of (TCvg)

Here again, given that the outer taming by projection can be viewed as a gener-
alization of the multiplicative taming, one approach is to verify (TMon) by similar
estimations.

Rh(t, y, z) = f(t, y, z)− fh(t, y, z) = f(t, y, z)(1− χh(t, y, z)).
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So, using as before 1− χh(t, y, z) ≤ |f(t, y, z)|r(h)−1,∣∣Rh(t, y, z)
∣∣ ≤ |f(t, y, z)|2r(h)−1

≤ C(1 + |y|m + |z|)2hα

≤ C(1 + |y|2m + |z|2)hα.

Therefore fh satisfies (TCvg) with the criterion 1.

Notice however that the above approach is not optimal ! Indeed, we know that the
difference Rh(t, y, z) = f(t, y, z) − fh(t, y, z) is null when f(t, y, z) is not too large.
We should aim at estimating Rh(t, y, z) with criterion 2 of (TCvg) . This has the
major advantage that one can then use the Markov inequality and essentially get the
convergence rate we want. Notice also that the first-approach estimation of R(mon),
following what was done for multiplicative tamings, in fact contains an estimation of
Rh(t, y, z). So we would improve the estimate there as well, and have a better chance
at proving that the scheme has the convergence rate we want.

Using the fact that Th(f) = f for |f | ≤ r(h), we see that

Rh(t, y, z) =
[
f(t, y, z)− Th

(
f(t, y, z)

)]
1{|f(t,y,z)|>r(h)}.

Here we can save a factor 2 in the constants by using the fact |f −Th(f)| ≤ |f | and so
with (Gr) we have∣∣Rh(t, y, z)

∣∣ ≤ ∣∣f(t, y, z)− Th
(
f(t, y, z)

)∣∣ 1{|f(t,y,z)|>r(h)}

≤ |f(t, y, z)| 1{|f(t,y,z)|>r(h)}

≤ C
(
1 + |y|m + |z|

)
1{|f(t,y,z)|>r(h)}.

Thus fh satisfies (TCvg) with the criterion 2. As said above, this estimate can be
used to better estimate R(mon).
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2.3 Verifications for the inner tamings

Consider a radius r(h) = r0h
−γ . The inner taming is given by

fh(t, y, z) = f
(
t, Th(y), z

)
,

where Th is the projection on the ball of Rn of center 0 and radius r(h).
Recall the basic properties of T : |T (y)| ≤ r and |T (y)| ≤ |y| for all y, and T (y) = y

if |y| ≤ r.

2.3.1 Verification of (TGr)

Using (Gr) ,

|fh(t, y, z)| ≤ Kt +Ky|Th(y)|m +Kz|z| ≤ Kt +Kyr(h)m−1|y|+Kz|z|.

So we set Kh
t = Kt, Kh

y = Kyf(h)m−1 and Kh
z = Kz. We have (Kh

y )2h bounded iff
γ ≤ 1

2(m−1) .

2.3.2 Verification of (TMonGr)

We write〈
y, fh(t, y, z)

〉
=
〈
y, f(t, Th(y), z)

〉
=
〈
y, f(t, Th(y), z)− f(t, 0, z)

〉
+ 〈y, f(t, 0, z)〉

≤
〈
y − 0, f(t, Th(y), z)− f(t, 0, z)

〉
+ α|y|2 +

K2
t

2α
+
K2
z

2α
|z|2,

by the standard manipulations using (Gr) . We now want handle the main term. If
|y| ≤ r(h), then by (Mon)〈
y − 0, f(t, Th(y), z)− f(t, 0, z)

〉
= 〈y − 0, f(t, y, z)− f(t, 0, z)〉 ≤My|y|2 ≤ max(0,My)|y|2.

If |y| > r(h), then we note that Th(y) = r(h) y
|y| , or equivalently y = |y|

r(h)T
h(y). Hence,

from (Mon) we have

〈
y − 0, f(t, Th(y), z)− f(t, 0, z)

〉
=
|y|
r(h)

〈
Th(y)− 0, f(t, Th(y), z)− f(t, 0, z)

〉
≤ |y|
r(h)

My|Th(y)|2

=
|y|
r(h)

Myr(h)2 = Myr(h)|y|

≤ max(0,My)|y|2.

since r < |y|. So we have the same upper bound in both cases, and we can conclude
that

〈
y, fh(t, y, z)

〉
≤ (max(0,My) + α)|y|2 +

K2
t

2α
+
K2
z

2α
|z|2.

Therefore, taking M̄h
t =

K2
t

2α , M̄
h
y = max(0,My) + α and M̄z =

K2
z

2α suits.
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2.3.3 Verification of (TReg)

We see immediately that, since fy only alters the argument y, (Reg) is unchanged
:

|fh(t′, y, z′)− fh(t, y, z)| = |f(t′, Th(y), z′)− f(t, Th(y), z)| ≤ Lt|t′ − t|
1
2 + Lz|z′ − z|.

2.3.4 Verification of (TRegY)

Using (RegY) and the 2-Lipschitzness of Th, we have

|fh(t, y′, z)− fh(t, y, z)| = |f(t, Th(y′), z)− f(t, Th(y), z)|
≤ Ly

(
1 + |Th(y′)|m−1 + |Th(y)|m−1

)
|Th(y′)− Th(y)|

≤ 2Ly
(
1 + r(h)m−1 + r(h)m−1

)
|y′ − y|

= 2Ly
(
1 + 2r(h)m−1

)
|y′ − y|,

so we set Lhy = 2Ly
(
1 + 2r(h)m−1

)
. As usual, (Lhy)2h is bounded iff γ ≤ 1

2(m−1) .

2.3.5 Verification of (TMon)

Sadly, it does not seem to be true that fh satisfies (Mon) i.e. has R(mon) = 0. We
can however do the standard estimation via Rh.

fh(t, y, z) = f(t, y, z)−Rh(t, y, z).

Then, using (Mon) for f ,〈
y′ − y, fh(t, y′, z)− fh(t, y, z)

〉
= 〈y′ − y, f(t, y′, z)− f(t, y, z)〉
−
〈
y′ − y,Rh(t, y′, z)−Rh(t, y, z)

〉
≤My |y′ − y|

2
+R(mon)(t, y′, y, z),

where

R(mon)(t, y′, y, z) = −
〈
y′ − y,Rh(t, y′, z)−Rh(t, y, z)

〉
.

Using the estimate for Rh found in the next subsubsection,

|R(mon)(t, y′, y, z)| ≤ |y′ − y||Rh(t, y′, z)−Rh(t, y, z)|
≤
(
|y′|+ |y|

)(
|Rh(t, y′, z)|+ |Rh(t, y, z)|

)
≤ C

(
|y′|+ |y|

)((
1 + |y′|m

)
1{|y′|>r(h)} +

(
1 + |y|m

)
1{|y|>r(h)}

)
≤ C

(
|y′|+ |y|

)(
1 + |y′|m + |y|m

)
1{|y′|>r(h) or |y|>r(h)}

≤ C
(

1 + |y′|2m + |y|2m
)

1{|y′|>r(h) or |y|>r(h)}.

2.3.6 Verification of (TCvg)

Using (RegY) and the fact that |y − Th(y)| ≤ |y|, we have

|Rh(t, y, z)| = |f(t, y, z)− fh(t, y, z)|
= |f(t, y, z)− f(t, Th(y), z)| 1{|y|>r(h)}

≤ Ly
(
1 + |y|m−1 + |Th(y)|m−1

)
|y − Th(y)| 1{|y|>r(h)}

≤ Ly
(
1 + |y|m−1 + |y|m−1

)
|y| 1{|y|>r(h)}

≤ C
(
1 + |y|m

)
1{|y|>r(h)}.
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2.4 Summary of the verifications and final convergence rates

2.4.1 The multiplicative tamings

It is seen relatively easily that (TGr) , (TMonGr) and (TReg) are satisfied. It
takes some effort for (TGr) because there are 4 cases to treat, but the taming is de-
signed to control the size of the driver, so (TGr) has to hold. The assumptions that are
potentially delicate to verify are (TRegY) and (TMon) . The idea here is to identify
a good term and a remainder. For the good term in (TRegY) , when the taming is
based on the output f(y) (rather than |y|m or |y|m−1), one very naturally has to as-
sume that “ |y|m is dominant in f ”. One can very probably construct counter-examples
to show that this assumption is required, and not just convenient. For (TMon) , the
remainder term is very related to the remainder Rh.

The conditions on the constants (Kh
y , Lhy , etc) require α ≤ 1

2 .

The estimates on the remainders R(regY) and R(mon) are as follow.

|R(regY)(t, y′, y, z)| ≤ C
(

1 + |y′|2m + |y|2m + |z|2
)
hα

and

|R(mon)(t, y′, y, z)| ≤ C
(

1 + |y′|4m + |y|4m + |z|2
)
hα.

The estimate on the convergence remainder is the following.

|Rh(t, y, z)| ≤ C
(

1 + |y|2m + |z|2
)
hα.

According to lemma ?? for (TCvg) case 1, since we have found p = 2 and α ≤ 1
2 ,

we have

µ = α ≤ 1

2
.

This means the global rate of the scheme is r = 1
2 min(1, µ) = 1

4 . This means the taming
vanishes slower than the effect of the time-discretization, and the scheme overall has
order 1/4 only. Having no Z-dependence does not help here, the limiting factor really is
the fact that α = α in (TCvg) .1 for R(mon) (related to µ2). This slowing-down might
be due to the fact that, while the multiplicative taming with 1+ . . . in the denominator
of χh helps controlling the driver outside the ball of radius r(h), it also induces an error
inside the ball, and that slows down the convergence of the scheme.

2.4.2 The outer taming

Assumptions (TGr) , (TMonGr) and (TReg) are almost immediate to verify.
The assumptions that are potentially delicate to verify are (TRegY) and (TMon) ,
and the good way is not to view the projection as a multiplicative taming but really
use the fact that projection restricted to the ball of radius r(h) = r0h

−β is the identity.
The idea is to distinguish the cases f(t, y, z) is in the ball and f(t, y, z) is out of the
ball. It is again naturally (and most probably necessarily) that the assumption “ |y|m
is dominant in f ” is used, as the taming is done according to the size of the output
f(t, y, z).

The conditions on the constants (Kh
y , Lhy , etc) require β ≤ 1

2 .
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The estimates on the remainders R(regY) and R(mon) are as follow.

|R(regY)(t, y′, y, z)| ≤ C
(

1 + |y′|2m + |y|2m
)

1{|f(t,y′,z)|>r(h) or |f(t,y,z)|>r(h)}

and

|R(mon)(t, y′, y, z)| ≤ C
(

1 + |y′|2m + |y|2m + |z|2
)

1{|f(t,y′,z)|>r(h) or |f(t,y,z)|>r(h)}.

The estimate on the convergence remainder is the following.

|Rh(t, y, z)| ≤ C
(

1 + |y|m + |z|
)

1{|f(t,y,z)|>r(h)}.

According to lemma ?? for (TCvg) case 2, since we have found, for R(regY), pregY =
0 (no z in the remainder), and for R(mon), pmon = 2, with β = 1

2 , we have

µ =
βl

2
=
l

4
.

This means the global rate of the scheme is r = 1
2 min(1, µ) = 1

2 , since l can be chosen
arbitrarily large. The effect of taming therefore vanishes arbitrarily fast, and surely
faster than the error induced by the time-discretization.

2.4.3 The inner taming

Those verifications are globally easier than for the outer taming. Assumptions
(TGr) , (TMonGr) and (TReg) are almost immediate to verify, (TMonGr) be-
ing the only one requiring real arguments. (TRegY) is easy to verify and is actually
satisfied with R(regY) = 0.

The conditions on the constants (Kh
y , Lhy , etc) require γ ≤ 1

2(m−1) .

The estimates on the remainders R(regY) and R(mon) are as follow.

|R(regY)(t, y′, y, z)| = 0

and

|R(mon)(t, y′, y, z)| ≤ C
(

1 + |y′|2m + |y|2m
)

1{|y′|>r(h) or |y|>r(h)}.

The estimate on the convergence remainder is the following.

|Rh(t, y, z| ≤ C
(

1 + |y|m
)

1{|y|>r(h)}.

According to lemma ?? for (TCvg) case 2, since we have found, R(regY) = 0, so
we can take µ1 = µ2 = +∞, and for R(mon), pmon = 0 (no z in the remainder), with
γ = 1

2(m−1) , we have

µ =
γl

2
=

l

4(m− 1)
.

But l can be chosen as big as wanted. This means the global rate of the scheme is
r = 1

2 min(1, µ) = 1
2 , as usual. With or without a z dependence, the effect of taming

therefore vanishes arbitrarily fast, and surely faster than the error induced by the
time-discretization.
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