Stability and analytic expansions of local solutions of systems of quadratic BSDEs with applications to a price impact model

Sergio Pulido

joint work with Dmitry Kramkov (CMU)

LaMME, ENSIIE / Université d'Évry Val d'Essonne

3rd Young Researchers Meeting in Probability, Numerics and Finance

Université du Maine, Le Mans, France, June 29, 2016

Furonean Research Counci

Outline

Motivation and questions

Stability and analytic expansion

Summary

Bibliography

Price impact model

Input: dividends, market makers' preferences, demand

- 1. Ψ : stocks' dividends paid at maturity T
- 2. $U(x) = -\frac{1}{a}e^{-ax}$, $x \in \mathbb{R}$: representative utility; a > 0 is aggregate risk-aversion

3. $\gamma = (\gamma_t)$: demand process (number of stocks)

Output: stocks' prices $S = S(\gamma, a) = (S_t)$ such that

$$\gamma = \arg\max_{\zeta} \mathbb{E}[U(\int_{0}^{T} \zeta dS)] = \arg\min_{\zeta} \mathbb{E}[\exp(-a\int_{0}^{T} \zeta dS)]$$

and $S_{t} = \mathbb{E}_{t}^{\mathbb{Q}}[\Psi], \ t \in [0, T], \text{ with } \mathbb{Q} = \mathbb{Q}(\gamma, S) \text{ given by}$
$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \operatorname{const} U'(\int_{0}^{T} \gamma dS) = \operatorname{const} \exp(-a\int_{0}^{T} \gamma dS) \qquad (1)$$

References: Grossman and Miller (1988) (single period), Garleanu et al. (2009) (discrete time), German (2011) (simple strategy)

Example: Bachelier model - Simple strategies

Assume that $\Psi = \sigma B_T$ (*B* a P-BM) and that $\gamma = q$ constant. We can rewrite our equilibrium mechanism as

$$S_t = \frac{\mathbb{E}_t[\Psi \exp(-aq\Psi)]}{\mathbb{E}_t[\exp(-aq\Psi)]}$$

In this case,

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \mathcal{E}(-\mathsf{aq}\sigma B)_T$$

By Girsanov's theorem $B_t + aq\sigma t$ is a Q-BM. Therefore

$$S_t = \mathbb{E}_t^{\mathbb{Q}}[\Psi] = \mathbb{E}_t^{\mathbb{Q}}[\sigma B_T] = \sigma(B_t + aq\sigma t) - aq\sigma^2 T$$

= $S_t(0) - aq\sigma^2(T - t)$ (2)

In general for simple demands, if Ψ has exponential moments, prices can be found by a backward recursion process!

Brownian framework

Assumption

The filtration is generated by a Brownian motion $B = (B_t)$:

 $\mathcal{F}_t = \mathcal{F}_t^B, \quad t \in [0, T]$

Stocks' prices evolve as

$$dS = \sigma \lambda dt + \sigma dB, \quad S_T = \Psi, \tag{3}$$

where

$$\lambda = (\lambda_t)$$
: the market price of risk;
 $\sigma = (\sigma_t)$: the volatility
Denote also

$$R_t = -rac{1}{a}\log \mathbb{E}_t\left[\exp(-a\int_t^T \gamma dS)
ight], \quad t\in[0,T],$$

the certainty equivalence value (CEV) of remaining gain

Multi-dimensional quadratic BSDE

Theorem

For dividends Ψ and demand γ , the following items are equivalent:

- 1. $S = S(\Psi, \gamma)$ is a price process, σ is the volatility, λ is the market price of risk, and R is the CEV process
- 2. (R, S, η, θ) with $\eta = \lambda a\sigma\gamma$ and $\theta = a\sigma$ solves the BSDE:

$$aR_{t} = \frac{1}{2} \int_{t}^{T} (|\theta\gamma|^{2} - |\eta|^{2}) ds - \int_{t}^{T} \eta dB, \qquad (4)$$
$$aS_{t} = a\Psi - \int_{t}^{T} \theta(\eta + \theta\gamma) ds - \int_{t}^{T} \theta dB, \qquad (5)$$

and the stochastic exponential

$$Z riangleq \mathcal{E}(-\int \lambda dB) = \mathcal{E}(-\int (\eta + heta \gamma) dB)$$

and the products $Z(\int \gamma dS)$ and ZS are martingales

BMO norms

• For a continuous martingale M with $M_0 = 0$,

$$\|\boldsymbol{M}\|_{\mathrm{BMO}} \triangleq \sup_{\tau} \|\{\mathbb{E}_{\tau}[|\boldsymbol{M}_{T} - \boldsymbol{M}_{\tau}|^{2}]\}^{1/2}\|_{\infty},$$

where the supremum is taken with respect to all stopping times $\boldsymbol{\tau}$

• For an integrable random variable ξ set

 $\|\xi\|_{\text{BMO}} \triangleq \|(\mathbb{E}_t[\xi] - \mathbb{E}[\xi])_{t \in [0,T]}\|_{\text{BMO}}$

• For a predictable process $\zeta = (\zeta_t)$ set

$$\|\zeta\|_{\text{BMO}} \triangleq \sup_{\tau} \|\left(\mathbb{E}_{\tau}[\int_{\tau}^{T} |\zeta_{s}|^{2} ds]\right)^{1/2}\|_{\infty},$$

where the supremum is taken with respect to all stopping times τ . By Ito's isometry,

$$\|\zeta\|_{\rm BMO} = \|\int \zeta dB\|_{\rm BMO}$$

Existence and uniqueness results

Theorem

There is a constant c > 0 such that if

 $a\|\gamma\|_{\infty}\|\Psi\|_{\text{BMO}} \le c, \tag{6}$

then the prices $S = S(\Psi, \gamma)$ exist and are unique. In this case

 $\begin{aligned} \|\lambda\|_{\text{BMO}} &\leq 4a \|\gamma\|_{\infty} \|\Psi\|_{\text{BMO}} \\ \|\sigma\|_{\text{BMO}} &\leq 2 \|\Psi\|_{\text{BMO}} \end{aligned} \tag{7}$

Proposition

There are bounded γ and Ψ such that

 $\textit{a} \| \gamma \|_{\infty} \| \Psi \|_{\infty} \leq 1$

and such that the prices $S = S(\Psi, \gamma)$ either do not exist or are not unique

Questions

1. Suppose that $(\gamma_n)_{n\geq 1}$ simple and γ satisfy (6) and that

 $\gamma_n \rightarrow \gamma$

Prices $S(\gamma_n)$ can be found by backward recursion. Do we have convergence of prices?

$$S(\gamma_n) \to S(\gamma)$$
 (8)

2. By (7) if
$$a \to 0$$
, then $\lambda(a) \to 0$ and
 $S_t(a) \to S_t(0) = \mathbb{E}_t[\Psi] = \operatorname{const} + (\sigma(0) \cdot B)_t$

Can we write an asymptotic expansion of prices in terms of a?

$$S(a) = S(0) +$$
correction terms (9)

Local stability of systems of quadratic BSDEs - Setup Consider the *n*-dimensional BSDEs:

$$Y_t = \Xi + \int_t^T f(s, \zeta_s) \, ds - \int_t^T \zeta \, dB, \quad t \in [0, T]$$
(10)
$$Y'_t = \Xi' + \int_t^T f'(s, \zeta'_s) \, ds - \int_t^T \zeta' \, dB, \quad t \in [0, T],$$
(11)

Assume that f, f' are quadratic,

$$|f(t, u) - f(t, v)| \le \Theta(|u - v|)(|u| + |v|),$$

 $|f'(t, u) - f'(t, v)| \le \Theta(|u - v|)(|u| + |v|),$

 $\Xi,\Xi'\in {\rm BMO}$ and there exists a nonnegative process $\delta=(\delta_t)$ such that

$$|f(t,z)-f'(t,z)| \le \delta_t |z|^2$$

Auxiliary definitions: *p*-norms

► S_p(Rⁿ): Semimartingales X = X₀ + M + A, where M is a continuous martingale and A is a process of finite variation, with the norm

$$\|X\|_{\mathcal{S}_p} \triangleq |X_0| + \|\langle M \rangle_T^{1/2}\|_{\mathcal{L}_p} + \|\int_0^T |dA|\|_{\mathcal{L}_p}$$

H_p(**R**^{n×d}): ζ predictable such that ζ · *B* ∈ S_p(**R**ⁿ) for a *d*-dimensional Brownian motion *B*. It is a Banach space under the norm:

$$\|\zeta\|_{\mathcal{H}_p} \triangleq \|\zeta \cdot B\|_{\mathcal{S}_p} = \{\mathbb{E}\left[\left(\int_0^T |\zeta_s|^2 ds\right)^{p/2}\right]\}^{1/p}$$

Local stability of systems of quadratic BSDEs

Theorem

Assume that the BSDEs (10)-(11) satisfy the previous conditions and let (Y, ζ) and (Y', ζ') be their respective solutions. For p > 1there are positive constants c = c(n, p) and C = C(n, p)(depending only on n and p) such that if

$$\|\zeta\|_{\text{BMO}} + \|\zeta'\|_{\text{BMO}} \le \frac{c}{\Theta},\tag{12}$$

then

$$\begin{aligned} \|\zeta' - \zeta\|_{\mathcal{H}_{\rho}} &\leq C\left(\|\Xi' - \Xi\|_{\mathcal{L}_{\rho}} + \|\sqrt{\delta}\zeta\|_{\mathcal{H}_{2\rho}}^{2}\right), \end{aligned} \tag{13} \\ \|Y' - Y\|_{\mathcal{S}_{\rho}} &\leq C\left(\|\Xi' - \Xi\|_{\mathcal{L}_{\rho}} + \|\sqrt{\delta}\zeta\|_{\mathcal{H}_{2\rho}}^{2}\right) \end{aligned} \tag{14}$$

Stability of prices with respect to demands

Theorem

There is a constant c = c(n, p) > 0 such that if $(\gamma^m)_{m \ge 1}$ and γ are bounded demands with

$$a\|\gamma^m\|_{\infty}\|\Psi\|_{\text{BMO}} \le c, \quad m \ge 1, \tag{15}$$

and

$$\mathbb{E}\left[\int_{0}^{T} |\gamma_{t}^{m} - \gamma_{t}| dt\right] \rightarrow 0, \quad n \rightarrow \infty,$$

then $(\gamma^m)_{m\geq 1}$ and γ are viable demands and the corresponding stock prices $(S^m)_{m\geq 1}$ and S, volatilities $(\sigma^m)_{m\geq 1}$ and σ , and the market prices of risk $(\lambda^m)_{m\geq 1}$ and λ converge as

 $\|S^m - S\|_{\mathcal{S}_p} + \|\sigma^m - \sigma\|_{\mathcal{H}_p} + \|\lambda^m - \lambda\|_{\mathcal{H}_p} \to 0, \quad m \to \infty.$ (16)

In particular, prices can be well approximated by the prices originated from simple demands

Parametrized family of BSDEs

Consider an *n*-dimensional BSDE

$$Y_t = a\Xi + \int_t^T f(s,\zeta_s) \, ds - \int_t^T \zeta \, dB, \quad t \in [0,T], \qquad (17)$$

where the terminal condition depends on a parameter $a \in \mathbf{R}$. There is only one solution $(Y(a), \zeta(a))$ such that $\|\zeta(a)\|_{BMO}$ is small and for this solution we have an estimate:

 $\|\zeta(\boldsymbol{a})\|_{\mathrm{BMO}} \leq 2|\boldsymbol{a}|\|\boldsymbol{\Xi}\|_{\mathrm{BMO}}.$

In particular, $\zeta(a)$ converges to 0 in BMO as a approaches 0

Analytic expansion of systems of purely quadratic BSDEs

Theorem If $f(u) = \tilde{f}(u, u)$ (\tilde{f} bilinear) then, the solution ($Y(a), \zeta(a)$) to (17) has a power series expansion

$$Y(a) = \sum_{k=1}^{\infty} Y^{(k)} a^k$$
 and $\zeta(a) = \sum_{k=1}^{\infty} \zeta^{(k)} a^k$

convergent for a small in BMO

Analytic expansion of systems of purely quadratic BSDEs

The coefficients can be calculated recursively by

$$Y_t^{(1)} = \mathbb{E}_t[\Xi], \quad t \in [0, T],$$

 $\zeta^{(1)} \cdot B = Y_t^{(1)} - Y_0^{(1)}$

and for $k \geq 2$

$$\zeta^{(k)} = \sum_{l+m=k} \widetilde{F}(\zeta^{(l)}, \zeta^{(m)}),$$
(18)
$$Y_t^{(k)} = \sum_{l+m=k} \mathbb{E}_t [\int_t^T \widetilde{f}(s, \zeta_s^{(l)}, \zeta_s^{(m)}) ds], \quad t \in [0, T],$$
(19)

where

$$(\widetilde{F}(\mu,\nu)\cdot B)_t = \mathbb{E}_t\left[\int_0^T \widetilde{f}(s,\mu_s,\nu_s)\,ds\right] - \mathbb{E}\left[\int_0^T \widetilde{f}(s,\mu_s,\nu_s)\,ds\right]$$

Analytic expansions of prices with respect to a

Theorem

There is a constant c = c(n) > 0 such that if

$$0 < a < \rho \triangleq rac{c}{\|\gamma\|_{\infty} \|\Psi - \mathbb{E}[\Psi]\|_{\mathrm{BMO}}},$$

then γ is a viable demand. The price $S(\gamma; a)$ is unique and admits the power series expansion in BMO:

$$S(\gamma; a) = S(0) + \sum_{k=1}^{\infty} S^{(k)} a^k, \quad a <
ho$$

The market price of risk $\lambda(\gamma; a)$ and the volatility $\sigma(\gamma; a)$ also have the power series expansions in BMO

The leading price impact coefficient in the expansion for stock prices is given by

$$S_t^{(1)} = -\mathbb{E}_t \left[\int_t^T \sigma_s(0)^2 \gamma_s \, ds
ight], \quad t \in [0, T]$$

This result had been obtained earlier in German (2011) for a simple demand; see (2)

Summary

- We study the price impact model of Grossman and Miller (1988); inverse to optimal investment
- Equivalent to multi-dimensional quadratic BSDE
- Stability of prices with respect to demands. Approximation with simple demands
- Analytic expansion of prices with respect to risk aversion coefficient

Bibliography

- Nicolae Garleanu, Lasse Heje Pedersen, and Allen M. Poteshman. Demand-based option pricing. *Rev. Financ. Stud.*, 22(10):4259–4299, 2009
- David German. Pricing in an equilibrium based model for a large investor. *Math. Financ. Econ.*, 4(4):287–297, 2011
- Sanford J. Grossman and Merton H. Miller. Liquidity and market structure. *The Journal of Finance*, 43(3):617–633, 1988
- Dmitry Kramkov and Sergio Pulido. A system of quadratic BSDEs arising in a price impact model. *Ann. Appl. Probab.* 2016, Vol. 26, No. 2, 794–817
- Dmitry Kramkov and Sergio Pulido. Stability and analytic expansions of local solutions of systems of quadratic BSDEs with applications to a price impact model. arXiv:1410.6144, forthcoming in SIAM Journal on Financial Mathematics, 2016. URL

http://arxiv.org/abs/1410.6144

Thank you!