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Price impact model

Input: dividends, market makers’ preferences, demand

1. Ψ: stocks’ dividends paid at maturity T
2. U(x) = −1

ae
−ax , x ∈ R: representative utility; a > 0 is

aggregate risk-aversion
3. γ = (γt): demand process (number of stocks)

Output: stocks’ prices S = S(γ, a) = (St) such that

γ = arg max
ζ

E[U(

∫ T

0
ζdS)] = arg min

ζ
E[exp(−a

∫ T

0
ζdS)]

and St = EQ
t [Ψ], t ∈ [0,T ], with Q = Q(γ,S) given by

dQ
dP

= constU ′(

∫ T

0
γdS) = const exp(−a

∫ T

0
γdS) (1)

References: Grossman and Miller (1988) (single period), Garleanu
et al. (2009) (discrete time), German (2011) (simple strategy)
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Example: Bachelier model - Simple strategies

Assume that Ψ = σBT (B a P-BM) and that γ = q constant. We
can rewrite our equilibrium mechanism as

St =
Et [Ψ exp(−aqΨ)]

Et [exp(−aqΨ)]

In this case,
dQ
dP

= E(−aqσB)T

By Girsanov’s theorem Bt + aqσt is a Q-BM. Therefore

St = EQ
t [Ψ] = EQ

t [σBT ] = σ(Bt + aqσt)− aqσ2T

= St(0)− aqσ2(T − t)
(2)

In general for simple demands, if Ψ has exponential moments,
prices can be found by a backward recursion process!
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Brownian framework

Assumption

The filtration is generated by a Brownian motion B = (Bt):

Ft = FB
t , t ∈ [0,T ]

Stocks’ prices evolve as

dS = σλdt + σdB, ST = Ψ, (3)

where

λ = (λt): the market price of risk;

σ = (σt): the volatility

Denote also

Rt = −1

a
logEt

[
exp(−a

∫ T

t
γdS)

]
, t ∈ [0,T ],

the certainty equivalence value (CEV) of remaining gain
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Multi-dimensional quadratic BSDE

Theorem
For dividends Ψ and demand γ, the following items are equivalent:

1. S = S(Ψ, γ) is a price process, σ is the volatility, λ is the
market price of risk, and R is the CEV process

2. (R, S , η, θ) with η = λ− aσγ and θ = aσ solves the BSDE:

aRt =
1

2

∫ T

t
(|θγ|2 − |η|2)ds −

∫ T

t
ηdB, (4)

aSt = aΨ−
∫ T

t
θ(η + θγ)ds −

∫ T

t
θdB, (5)

and the stochastic exponential

Z , E(−
∫
λdB) = E(−

∫
(η + θγ)dB)

and the products Z (
∫
γdS) and ZS are martingales

6 / 21



BMO norms
I For a continuous martingale M with M0 = 0,

‖M‖BMO , sup
τ
‖{Eτ [|MT −Mτ |2]}1/2‖∞,

where the supremum is taken with respect to all stopping
times τ

I For an integrable random variable ξ set

‖ξ‖BMO , ‖(Et [ξ]− E[ξ])t∈[0,T ]‖BMO

I For a predictable process ζ = (ζt) set

‖ζ‖BMO , sup
τ
‖
(
Eτ [

∫ T

τ
|ζs |2ds]

)1/2

‖∞,

where the supremum is taken with respect to all stopping
times τ . By Ito’s isometry,

‖ζ‖BMO = ‖
∫
ζdB‖BMO
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Existence and uniqueness results

Theorem
There is a constant c > 0 such that if

a‖γ‖∞‖Ψ‖BMO ≤ c , (6)

then the prices S = S(Ψ, γ) exist and are unique. In this case

‖λ‖BMO ≤ 4a‖γ‖∞‖Ψ‖BMO

‖σ‖BMO ≤ 2‖Ψ‖BMO
(7)

Proposition

There are bounded γ and Ψ such that

a‖γ‖∞‖Ψ‖∞ ≤ 1

and such that the prices S = S(Ψ, γ) either do not exist or are not
unique
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Questions

1. Suppose that (γn)n≥1 simple and γ satisfy (6) and that

γn → γ

Prices S(γn) can be found by backward recursion. Do we
have convergence of prices?

S(γn)→ S(γ) (8)

2. By (7) if a→ 0, then λ(a)→ 0 and

St(a)→ St(0) = Et [Ψ] = const +(σ(0) · B)t

Can we write an asymptotic expansion of prices in terms of a?

S(a) = S(0) + correction terms (9)
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Local stability of systems of quadratic BSDEs - Setup
Consider the n-dimensional BSDEs:

Yt = Ξ +

∫ T

t
f (s, ζs) ds −

∫ T

t
ζ dB, t ∈ [0,T ] (10)

Y ′t = Ξ′ +

∫ T

t
f ′(s, ζ ′s) ds −

∫ T

t
ζ ′ dB, t ∈ [0,T ], (11)

Assume that f , f ′ are quadratic,

|f (t, u)− f (t, v)| ≤ Θ(|u − v |)(|u|+ |v |),
|f ′(t, u)− f ′(t, v)| ≤ Θ(|u − v |)(|u|+ |v |),

Ξ,Ξ′ ∈ BMO and there exists a nonnegative process δ = (δt) such
that

|f (t, z)− f ′(t, z)| ≤ δt |z |2
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Auxiliary definitions: p–norms

I Sp(Rn): Semimartingales X = X0 + M + A, where M is a
continuous martingale and A is a process of finite variation,
with the norm

‖X‖Sp , |X0|+ ‖〈M〉1/2T ‖Lp + ‖
∫ T

0
|dA|‖Lp

I Hp(Rn×d): ζ predictable such that ζ · B ∈ Sp(Rn) for a
d-dimensional Brownian motion B. It is a Banach space
under the norm:

‖ζ‖Hp , ‖ζ · B‖Sp = {E

[(∫ T

0
|ζs |2ds

)p/2
]
}1/p
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Local stability of systems of quadratic BSDEs

Theorem
Assume that the BSDEs (10)– (11) satisfy the previous conditions
and let (Y , ζ) and (Y ′, ζ ′) be their respective solutions. For p > 1
there are positive constants c = c(n, p) and C = C (n, p)
(depending only on n and p) such that if

‖ζ‖BMO + ‖ζ ′‖BMO ≤
c

Θ
, (12)

then

‖ζ ′ − ζ‖Hp ≤ C
(
‖Ξ′ − Ξ‖Lp + ‖

√
δζ‖2H2p

)
, (13)

‖Y ′ − Y ‖Sp ≤ C
(
‖Ξ′ − Ξ‖Lp + ‖

√
δζ‖2H2p

)
(14)
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Stability of prices with respect to demands

Theorem
There is a constant c = c(n, p) > 0 such that if (γm)m≥1 and γ
are bounded demands with

a‖γm‖∞‖Ψ‖BMO ≤ c , m ≥ 1, (15)

and

E
[∫ T

0
|γmt − γt |dt

]
→ 0, n→∞,

then (γm)m≥1 and γ are viable demands and the corresponding
stock prices (Sm)m≥1 and S , volatilities (σm)m≥1 and σ, and the
market prices of risk (λm)m≥1 and λ converge as

‖Sm − S‖Sp + ‖σm − σ‖Hp + ‖λm − λ‖Hp → 0, m→∞. (16)

In particular, prices can be well approximated by the prices
originated from simple demands
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Parametrized family of BSDEs

Consider an n-dimensional BSDE

Yt = aΞ +

∫ T

t
f (s, ζs) ds −

∫ T

t
ζ dB, t ∈ [0,T ], (17)

where the terminal condition depends on a parameter a ∈ R.
There is only one solution (Y (a), ζ(a)) such that ‖ζ(a)‖BMO is
small and for this solution we have an estimate:

‖ζ(a)‖BMO ≤ 2|a|‖Ξ‖BMO.

In particular, ζ(a) converges to 0 in BMO as a approaches 0
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Analytic expansion of systems of purely quadratic BSDEs

Theorem
If f (u) = f̃ (u, u) (f̃ bilinear) then, the solution (Y (a), ζ(a))
to (17) has a power series expansion

Y (a) =
∞∑
k=1

Y (k)ak and ζ(a) =
∞∑
k=1

ζ(k)ak

convergent for |a| small in BMO
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Analytic expansion of systems of purely quadratic BSDEs
The coefficients can be calculated recursively by

Y
(1)
t = Et [Ξ], t ∈ [0,T ],

ζ(1) · B = Y
(1)
t − Y

(1)
0

and for k ≥ 2

ζ(k) =
∑

l+m=k

F̃ (ζ(l), ζ(m)), (18)

Y
(k)
t =

∑
l+m=k

Et [

∫ T

t
f̃ (s, ζ

(l)
s , ζ

(m)
s )ds], t ∈ [0,T ], (19)

where

(F̃ (µ, ν) · B)t = Et

[∫ T

0
f̃ (s, µs , νs) ds

]
− E

[∫ T

0
f̃ (s, µs , νs) ds

]
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Analytic expansions of prices with respect to a

Theorem
There is a constant c = c(n) > 0 such that if

0 < a < ρ ,
c

‖γ‖∞‖Ψ− E[Ψ]‖BMO
,

then γ is a viable demand. The price S(γ; a) is unique and admits
the power series expansion in BMO:

S(γ; a) = S(0) +
∞∑
k=1

S (k)ak , a < ρ

The market price of risk λ(γ; a) and the volatility σ(γ; a) also have
the power series expansions in BMO
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First order approximation

The leading price impact coefficient in the expansion for stock
prices is given by

S
(1)
t = −Et

[∫ T

t
σs(0)2γs ds

]
, t ∈ [0,T ]

This result had been obtained earlier in German (2011) for a
simple demand; see (2)
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Summary

I We study the price impact model of Grossman and Miller
(1988); inverse to optimal investment

I Equivalent to multi-dimensional quadratic BSDE

I Stability of prices with respect to demands. Approximation
with simple demands

I Analytic expansion of prices with respect to risk aversion
coefficient
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Thank you!
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