Stability and analytic expansions of local solutions of systems of quadratic BSDEs with applications to a price impact model

Sergio Pulido
joint work with Dmitry Kramkov (CMU)
LaMME, ENSIIE / Université d'Évry Val d'Essonne

3rd Young Researchers Meeting in Probability, Numerics and Finance
Université du Maine, Le Mans, France, June 29, 2016
:.: : : : L Loboctotie de
":: : : : Mochénotiques

Outline

Motivation and questions

Stability and analytic expansion

Summary

Bibliography

Price impact model

Input: dividends, market makers' preferences, demand

1. Ψ : stocks' dividends paid at maturity T
2. $U(x)=-\frac{1}{a} e^{-a x}, x \in \mathbf{R}$: representative utility; $a>0$ is aggregate risk-aversion
3. $\gamma=\left(\gamma_{t}\right)$: demand process (number of stocks)

Output: stocks' prices $S=S(\gamma, a)=\left(S_{t}\right)$ such that

$$
\gamma=\underset{\zeta}{\arg \max } \mathbb{E}\left[U\left(\int_{0}^{T} \zeta d S\right)\right]=\underset{\zeta}{\arg \min } \mathbb{E}\left[\exp \left(-a \int_{0}^{T} \zeta d S\right)\right]
$$

$$
\text { and } S_{t}=\mathbb{E}_{t}^{\mathbb{Q}}[\Psi], t \in[0, T] \text {, with } \mathbb{Q}=\mathbb{Q}(\gamma, S) \text { given by }
$$

$$
\begin{equation*}
\frac{d \mathbb{Q}}{d \mathbb{P}}=\operatorname{const} U^{\prime}\left(\int_{0}^{T} \gamma d S\right)=\operatorname{const} \exp \left(-a \int_{0}^{T} \gamma d S\right) \tag{1}
\end{equation*}
$$

References: Grossman and Miller (1988) (single period), Garleanu et al. (2009) (discrete time), German (2011) (simple strategy)

Example: Bachelier model - Simple strategies

Assume that $\Psi=\sigma B_{T}$ (B a $\left.\mathbb{P}-\mathrm{BM}\right)$ and that $\gamma=q$ constant. We can rewrite our equilibrium mechanism as

$$
S_{t}=\frac{\mathbb{E}_{t}[\Psi \exp (-a q \Psi)]}{\mathbb{E}_{t}[\exp (-a q \Psi)]}
$$

In this case,

$$
\frac{d \mathbb{Q}}{d \mathbb{P}}=\mathcal{E}(-a q \sigma B)_{T}
$$

By Girsanov's theorem $B_{t}+a q \sigma t$ is a \mathbb{Q}-BM. Therefore

$$
\begin{align*}
S_{t} & =\mathbb{E}_{t}^{\mathbb{Q}}[\Psi]=\mathbb{E}_{t}^{\mathbb{Q}}\left[\sigma B_{T}\right]=\sigma\left(B_{t}+a q \sigma t\right)-a q \sigma^{2} T \\
& =S_{t}(0)-a q \sigma^{2}(T-t) \tag{2}
\end{align*}
$$

In general for simple demands, if ψ has exponential moments, prices can be found by a backward recursion process!

Brownian framework

Assumption

The filtration is generated by a Brownian motion $B=\left(B_{t}\right)$:

$$
\mathcal{F}_{t}=\mathcal{F}_{t}^{B}, \quad t \in[0, T]
$$

Stocks' prices evolve as

$$
\begin{equation*}
d S=\sigma \lambda d t+\sigma d B, \quad S_{T}=\Psi \tag{3}
\end{equation*}
$$

where
$\lambda=\left(\lambda_{t}\right)$: the market price of risk;
$\sigma=\left(\sigma_{t}\right)$: the volatility
Denote also

$$
R_{t}=-\frac{1}{a} \log \mathbb{E}_{t}\left[\exp \left(-a \int_{t}^{T} \gamma d S\right)\right], \quad t \in[0, T]
$$

the certainty equivalence value (CEV) of remaining gain

Multi-dimensional quadratic BSDE

Theorem
For dividends ψ and demand γ, the following items are equivalent:

1. $S=S(\Psi, \gamma)$ is a price process, σ is the volatility, λ is the market price of risk, and R is the CEV process
2. (R, S, η, θ) with $\eta=\lambda-a \sigma \gamma$ and $\theta=a \sigma$ solves the $B S D E$:

$$
\begin{align*}
& a R_{t}=\frac{1}{2} \int_{t}^{T}\left(|\theta \gamma|^{2}-|\eta|^{2}\right) d s-\int_{t}^{T} \eta d B \tag{4}\\
& a S_{t}=a \Psi-\int_{t}^{T} \theta(\eta+\theta \gamma) d s-\int_{t}^{T} \theta d B \tag{5}
\end{align*}
$$

and the stochastic exponential

$$
Z \triangleq \mathcal{E}\left(-\int \lambda d B\right)=\mathcal{E}\left(-\int(\eta+\theta \gamma) d B\right)
$$

and the products $Z\left(\int \gamma d S\right)$ and $Z S$ are martingales

BMO norms

- For a continuous martingale M with $M_{0}=0$,

$$
\|M\|_{\mathrm{BMO}} \triangleq \sup _{\tau}\left\|\left\{\mathbb{E}_{\tau}\left[\left|M_{T}-M_{\tau}\right|^{2}\right]\right\}^{1 / 2}\right\|_{\infty}
$$

where the supremum is taken with respect to all stopping times τ

- For an integrable random variable ξ set

$$
\|\xi\|_{\mathrm{BMO}} \triangleq\left\|\left(\mathbb{E}_{t}[\xi]-\mathbb{E}[\xi]\right)_{t \in[0, T]}\right\|_{\mathrm{BMO}}
$$

- For a predictable process $\zeta=\left(\zeta_{t}\right)$ set

$$
\|\zeta\|_{\mathrm{BMO}} \triangleq \sup _{\tau}\left\|\left(\mathbb{E}_{\tau}\left[\int_{\tau}^{T}\left|\zeta_{s}\right|^{2} d s\right]\right)^{1 / 2}\right\|_{\infty}
$$

where the supremum is taken with respect to all stopping times τ. By Ito's isometry,

$$
\|\zeta\|_{\mathrm{BMO}}=\left\|\int \zeta d B\right\|_{\mathrm{BMO}}
$$

Existence and uniqueness results

Theorem
There is a constant $c>0$ such that if

$$
\begin{equation*}
a\|\gamma\|_{\infty}\|\Psi\|_{\mathrm{BMO}} \leq c \tag{6}
\end{equation*}
$$

then the prices $S=S(\Psi, \gamma)$ exist and are unique. In this case

$$
\begin{align*}
& \|\lambda\|_{\mathrm{BMO}} \leq 4 a\|\gamma\|_{\infty}\|\Psi\|_{\mathrm{BMO}} \tag{7}\\
& \|\sigma\|_{\text {BMO }} \leq 2\|\Psi\|_{\text {BMO }}
\end{align*}
$$

Proposition
There are bounded γ and Ψ such that

$$
a\|\gamma\|_{\infty}\|\Psi\|_{\infty} \leq 1
$$

and such that the prices $S=S(\Psi, \gamma)$ either do not exist or are not unique

Questions

1. Suppose that $\left(\gamma_{n}\right)_{n \geq 1}$ simple and γ satisfy (6) and that

$$
\gamma_{n} \rightarrow \gamma
$$

Prices $S\left(\gamma_{n}\right)$ can be found by backward recursion. Do we have convergence of prices?

$$
\begin{equation*}
S\left(\gamma_{n}\right) \rightarrow S(\gamma) \tag{8}
\end{equation*}
$$

2. By (7) if $a \rightarrow 0$, then $\lambda(a) \rightarrow 0$ and

$$
S_{t}(a) \rightarrow S_{t}(0)=\mathbb{E}_{t}[\Psi]=\text { const }+(\sigma(0) \cdot B)_{t}
$$

Can we write an asymptotic expansion of prices in terms of a ?

$$
\begin{equation*}
S(a)=S(0)+\text { correction terms } \tag{9}
\end{equation*}
$$

Local stability of systems of quadratic BSDEs - Setup

Consider the n-dimensional BSDEs:

$$
\begin{align*}
& Y_{t}=\equiv+\int_{t}^{T} f\left(s, \zeta_{s}\right) d s-\int_{t}^{T} \zeta d B, \quad t \in[0, T] \tag{10}\\
& Y_{t}^{\prime}=\Xi^{\prime}+\int_{t}^{T} f^{\prime}\left(s, \zeta_{s}^{\prime}\right) d s-\int_{t}^{T} \zeta^{\prime} d B, \quad t \in[0, T] \tag{11}
\end{align*}
$$

Assume that f, f^{\prime} are quadratic,

$$
\begin{aligned}
|f(t, u)-f(t, v)| & \leq \Theta(|u-v|)(|u|+|v|), \\
\left|f^{\prime}(t, u)-f^{\prime}(t, v)\right| & \leq \Theta(|u-v|)(|u|+|v|),
\end{aligned}
$$

三, $\Xi^{\prime} \in \mathrm{BMO}$ and there exists a nonnegative process $\delta=\left(\delta_{t}\right)$ such that

$$
\left|f(t, z)-f^{\prime}(t, z)\right| \leq \delta_{t}|z|^{2}
$$

Auxiliary definitions: p-norms

- $\mathcal{S}_{p}\left(\mathbf{R}^{n}\right)$: Semimartingales $X=X_{0}+M+A$, where M is a continuous martingale and A is a process of finite variation, with the norm

$$
\|X\|_{\mathcal{S}_{p}} \triangleq\left|X_{0}\right|+\left\|\langle M\rangle_{T}^{1 / 2}\right\|_{\mathcal{L}_{p}}+\left\|\int_{0}^{T}|d A|\right\|_{\mathcal{L}_{p}}
$$

- $\mathcal{H}_{p}\left(\mathbf{R}^{n \times d}\right): \zeta$ predictable such that $\zeta \cdot B \in \mathcal{S}_{p}\left(\mathbf{R}^{n}\right)$ for a d-dimensional Brownian motion B. It is a Banach space under the norm:

$$
\|\zeta\|_{\mathcal{H}_{p}} \triangleq\|\zeta \cdot B\|_{\mathcal{S}_{p}}=\left\{\mathbb{E}\left[\left(\int_{0}^{T}\left|\zeta_{s}\right|^{2} d s\right)^{p / 2}\right]\right\}^{1 / p}
$$

Local stability of systems of quadratic BSDEs

Theorem
Assume that the BSDEs (10)- (11) satisfy the previous conditions and let (Y, ζ) and $\left(Y^{\prime}, \zeta^{\prime}\right)$ be their respective solutions. For $p>1$ there are positive constants $c=c(n, p)$ and $C=C(n, p)$ (depending only on n and p) such that if

$$
\begin{equation*}
\|\zeta\|_{\mathrm{BMO}}+\left\|\zeta^{\prime}\right\|_{\mathrm{BMO}} \leq \frac{c}{\Theta} \tag{12}
\end{equation*}
$$

then

$$
\begin{align*}
& \left\|\zeta^{\prime}-\zeta\right\|_{\mathcal{H}_{p}} \leq C\left(\left\|\Xi^{\prime}-\equiv\right\|_{\mathcal{L}_{p}}+\|\sqrt{\delta} \zeta\|_{\mathcal{H}_{2 p}}^{2}\right) \tag{13}\\
& \left\|Y^{\prime}-Y\right\|_{\mathcal{S}_{p}} \leq C\left(\left\|\Xi^{\prime}-\equiv\right\|_{\mathcal{L}_{p}}+\|\sqrt{\delta} \zeta\|_{\mathcal{H}_{2 p}}^{2}\right) \tag{14}
\end{align*}
$$

Stability of prices with respect to demands

Theorem
There is a constant $c=c(n, p)>0$ such that if $\left(\gamma^{m}\right)_{m \geq 1}$ and γ are bounded demands with

$$
\begin{equation*}
a\left\|\gamma^{m}\right\|_{\infty}\|\Psi\|_{\text {BMO }} \leq c, \quad m \geq 1 \tag{15}
\end{equation*}
$$

and

$$
\mathbb{E}\left[\int_{0}^{T}\left|\gamma_{t}^{m}-\gamma_{t}\right| d t\right] \rightarrow 0, \quad n \rightarrow \infty
$$

then $\left(\gamma^{m}\right)_{m \geq 1}$ and γ are viable demands and the corresponding stock prices $\left(S^{m}\right)_{m \geq 1}$ and S, volatilities $\left(\sigma^{m}\right)_{m \geq 1}$ and σ, and the market prices of risk $\left(\lambda^{m}\right)_{m \geq 1}$ and λ converge as

$$
\begin{equation*}
\left\|S^{m}-S\right\|_{\mathcal{S}_{p}}+\left\|\sigma^{m}-\sigma\right\|_{\mathcal{H}_{p}}+\left\|\lambda^{m}-\lambda\right\|_{\mathcal{H}_{p}} \rightarrow 0, \quad m \rightarrow \infty \tag{16}
\end{equation*}
$$

In particular, prices can be well approximated by the prices originated from simple demands

Parametrized family of BSDEs

Consider an n-dimensional BSDE

$$
\begin{equation*}
Y_{t}=a \equiv+\int_{t}^{T} f\left(s, \zeta_{s}\right) d s-\int_{t}^{T} \zeta d B, \quad t \in[0, T] \tag{17}
\end{equation*}
$$

where the terminal condition depends on a parameter $a \in \mathbf{R}$.
There is only one solution $(Y(a), \zeta(a))$ such that $\|\zeta(a)\|_{\text {BMO }}$ is small and for this solution we have an estimate:

$$
\|\zeta(a)\|_{\mathrm{BMO}} \leq 2|a|\|\equiv\|_{\mathrm{BMO}} .
$$

In particular, $\zeta(a)$ converges to 0 in BMO as a approaches 0

Analytic expansion of systems of purely quadratic BSDEs

Theorem
If $f(u)=\widetilde{f}(u, u)(\widetilde{f}$ bilinear) then, the solution $(Y(a), \zeta(a))$ to (17) has a power series expansion

$$
Y(a)=\sum_{k=1}^{\infty} Y^{(k)} a^{k} \quad \text { and } \quad \zeta(a)=\sum_{k=1}^{\infty} \zeta^{(k)} a^{k}
$$

convergent for $|a|$ small in BMO

Analytic expansion of systems of purely quadratic BSDEs

The coefficients can be calculated recursively by

$$
\begin{aligned}
Y_{t}^{(1)} & =\mathbb{E}_{t}[\overline{=}], \quad t \in[0, T], \\
\zeta^{(1)} \cdot B & =Y_{t}^{(1)}-Y_{0}^{(1)}
\end{aligned}
$$

and for $k \geq 2$

$$
\begin{align*}
\zeta^{(k)} & =\sum_{I+m=k} \widetilde{F}\left(\zeta^{(I)}, \zeta^{(m)}\right), \tag{18}\\
Y_{t}^{(k)} & =\sum_{I+m=k} \mathbb{E}_{t}\left[\int_{t}^{T} \widetilde{f}\left(s, \zeta_{s}^{(I)}, \zeta_{s}^{(m)}\right) d s\right], \quad t \in[0, T], \tag{19}
\end{align*}
$$

where

$$
(\widetilde{F}(\mu, \nu) \cdot B)_{t}=\mathbb{E}_{t}\left[\int_{0}^{T} \widetilde{f}\left(s, \mu_{s}, \nu_{s}\right) d s\right]-\mathbb{E}\left[\int_{0}^{T} \widetilde{f}\left(s, \mu_{s}, \nu_{s}\right) d s\right]
$$

Analytic expansions of prices with respect to a

Theorem

There is a constant $c=c(n)>0$ such that if

$$
0<a<\rho \triangleq \frac{c}{\|\gamma\|_{\infty}\|\Psi-\mathbb{E}[\Psi]\|_{\mathrm{BMO}}}
$$

then γ is a viable demand. The price $S(\gamma ; a)$ is unique and admits the power series expansion in BMO:

$$
S(\gamma ; a)=S(0)+\sum_{k=1}^{\infty} S^{(k)} a^{k}, \quad a<\rho
$$

The market price of risk $\lambda(\gamma ; a)$ and the volatility $\sigma(\gamma ; a)$ also have the power series expansions in BMO

First order approximation

The leading price impact coefficient in the expansion for stock prices is given by

$$
S_{t}^{(1)}=-\mathbb{E}_{t}\left[\int_{t}^{T} \sigma_{s}(0)^{2} \gamma_{s} d s\right], \quad t \in[0, T]
$$

This result had been obtained earlier in German (2011) for a simple demand; see (2)

Summary

- We study the price impact model of Grossman and Miller (1988); inverse to optimal investment
- Equivalent to multi-dimensional quadratic BSDE
- Stability of prices with respect to demands. Approximation with simple demands
- Analytic expansion of prices with respect to risk aversion coefficient

Bibliography

Nicolae Garleanu, Lasse Heje Pedersen, and Allen M. Poteshman.
Demand-based option pricing. Rev. Financ. Stud., 22(10):4259-4299, 2009
David German. Pricing in an equilibrium based model for a large investor. Math. Financ. Econ., 4(4):287-297, 2011
Sanford J. Grossman and Merton H. Miller. Liquidity and market structure. The Journal of Finance, 43(3):617-633, 1988
Dmitry Kramkov and Sergio Pulido. A system of quadratic BSDEs arising in a price impact model. Ann. Appl. Probab. 2016, Vol. 26, No. 2, 794-817
Dmitry Kramkov and Sergio Pulido. Stability and analytic expansions of local solutions of systems of quadratic BSDEs with applications to a price impact model. arXiv:1410.6144, forthcoming in SIAM Journal on Financial Mathematics, 2016. URL
http://arxiv.org/abs/1410.6144

Thank you!

