An adverse selection approach to power tarification

Nicolás Hernández

CMM, Universidad de Chile and CEREMADE, Université Paris-Dauphine

Work in progress with C.Alasseur, I.Ekeland, R.Élie and D.Possamaï as part of PhD thesis: "Contributions to the Principal-Agent theory"

3rd Young Researchers Meeting in Probability, Numerics and Finance. June 29, 2016

(1) Problem and Model

(2) Agent's problem
(3) Principal's problem

44 Agents with CRRA utilities

An electricity company wants to determine the optimal tariff $p(t, c)$ of the electrical consumption for its clients.

Types of the population: x

From the game theory point of view, the Company and the Client play a Non-zero sum Stackelberg game.

- $K:[0, T] \times \mathcal{C} \longrightarrow \mathbb{R}_{+}$is the cost of production of electricity for the Principal. $(K(t, c))$
- $t \mapsto K(t, c)$ is continuous $\forall c$.
- $c \mapsto K(t, c)$ is $C^{1}(\mathcal{C})$, increasing and strictly convex $\forall t$.
- $K:[0, T] \times \mathcal{C} \longrightarrow \mathbb{R}_{+}$is the cost of production of electricity for the Principal. $(K(t, c))$
- $t \mapsto K(t, c)$ is continuous $\forall c$.
- $c \mapsto K(t, c)$ is $C^{1}(\mathcal{C})$, increasing and strictly convex $\forall t$.
- x is the Agent's type, taking values in some set $X \subset \mathbb{R}$.
- $f: X \longrightarrow \mathbb{R}_{+}$is the density of the Agent's type on X.
- f is known by the Principal.
- $K:[0, T] \times \mathcal{C} \longrightarrow \mathbb{R}_{+}$is the cost of production of electricity for the Principal. $(K(t, c))$
- $t \mapsto K(t, c)$ is continuous $\forall c$.
- $c \mapsto K(t, c)$ is $C^{1}(\mathcal{C})$, increasing and strictly convex $\forall t$.
- x is the Agent's type, taking values in some set $X \subset \mathbb{R}$.
- $f: X \longrightarrow \mathbb{R}_{+}$is the density of the Agent's type on X.
- f is known by the Principal.
- $u:[0, T] \times X \times \mathcal{C} \longrightarrow \mathbb{R}$ is the utility function of the Agents. $(u(t, x, c))$
- u is jointly continuous.
- $c \longmapsto u(t, x, c)$ is non-decreasing and concave for every (t, x).
- $c \longmapsto \frac{\partial u}{\partial x}(t, x, c)$ is invertible.
(1) Problem and Model
(2) Agent's problem
- u-convexity
- Solving the Agent's problem
(3) Principal's problem

4 Agents with CRRA utilities

Given $p \in \mathcal{P}$, the problem of the Agent of type $x \in X$ is

$$
U_{A}(p, x):=\sup _{c} \int_{0}^{T} u(t, x, c(t))-p(t, c(t)) \mathrm{d} t .
$$

Given $p \in \mathcal{P}$, the problem of the Agent of type $x \in X$ is

$$
U_{A}(p, x):=\sup _{c} \int_{0}^{T} u(t, x, c(t))-p(t, c(t)) \mathrm{d} t .
$$

Definition 1

Let φ be a map from $[0, T] \times \mathcal{C}$ to \mathbb{R}. The u-transform $\varphi^{\star}:[0, T] \times X \longrightarrow \mathbb{R} \cup\{+\infty\}$, is defined by

$$
\varphi^{\star}(t, x):=\sup _{c \in \mathcal{C}}\{u(t, x, c)-\varphi(t, c)\}, \text { for any }(t, x) \in[0, T] \times X .
$$

Given $p \in \mathcal{P}$, the problem of the Agent of type $x \in X$ is

$$
U_{A}(p, x):=\sup _{c} \int_{0}^{T} u(t, x, c(t))-p(t, c(t)) \mathrm{d} t
$$

Definition 1

Let φ be a map from $[0, T] \times \mathcal{C}$ to \mathbb{R}. The u-transform $\varphi^{\star}:[0, T] \times X \longrightarrow \mathbb{R} \cup\{+\infty\}$, is defined by

$$
\varphi^{\star}(t, x):=\sup _{c \in \mathcal{C}}\{u(t, x, c)-\varphi(t, c)\}, \text { for any }(t, x) \in[0, T] \times X
$$

Similarly, if ψ is a map from $[0, T] \times X$ to \mathbb{R}, its u-transform $\psi^{\star}:[0, T] \times \mathcal{C} \longrightarrow \mathbb{R} \cup\{+\infty\}$ is defined by

$$
\psi^{\star}(t, c):=\sup _{x \in X}\{u(t, x, c)-\psi(t, x)\}, \text { for any }(t, c) \in[0, T] \times \mathcal{C}
$$

Definition 2

A map $\varphi:[0, T] \times \mathcal{C} \longrightarrow \mathbb{R} \cup\{+\infty\}$ is said to be u-convex if it is proper and if there exists some $\psi:[0, T] \times X \longrightarrow \mathbb{R}$ such that

$$
\varphi(t, c)=\psi^{\star}(t, c), \text { for any }(t, c) \in[0, T] \times \mathcal{C} .
$$

Definition 2

A map $\varphi:[0, T] \times \mathcal{C} \longrightarrow \mathbb{R} \cup\{+\infty\}$ is said to be u-convex if it is proper and if there exists some $\psi:[0, T] \times X \longrightarrow \mathbb{R}$ such that

$$
\varphi(t, c)=\psi^{\star}(t, c), \text { for any }(t, c) \in[0, T] \times \mathcal{C} .
$$

Proposition 1

A map $\varphi:[0, T] \times \mathcal{C} \longrightarrow \mathbb{R} \cup\{+\infty\}$ is u-convex if and only if

$$
\varphi(t, c)=\left(\varphi^{\star}\right)^{\star}(t, c), \text { for any }(t, c) \in[0, T] \times \mathcal{C} .
$$

\Longrightarrow If p is u-convex it can be recovered from p^{\star}.

Definition 3

Let $\psi:[0, T] \times X \longrightarrow \mathbb{R} \cup\{+\infty\}$ be a u-convex function. For any $(t, x) \in[0, T] \times X$, the u-subdifferential of ψ at the point (t, x) is the set

$$
\partial^{\star} \psi(t, x):=\left\{c \in \mathcal{C}, \psi^{\star}(t, c)=u(t, x, c)-\psi(t, x)\right\} .
$$

Definition 4

A tariff $p:[0, T] \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ is admissible if

- p is a u-convex function.
- $\partial^{\star} p^{\star}(t, x)$ is non-empty for every (t, x).
- $x \longmapsto p^{\star}(t, x) \in W^{1, m}(0,1)$, for a.e. t.

We denote by \mathcal{P} the set of admissible tariffs.

For every $p \in \mathcal{P}$ the agent has a unique optimal response:

$$
\begin{gather*}
p^{\star}(t, x)=u\left(t, x, c^{\star}\right)-p\left(t, c^{\star}\right), \text { for every } c^{\star} \in \partial^{\star} p^{\star}(t, x) . \\
\Longrightarrow \frac{\partial u}{\partial x}\left(t, x, c^{\star}\right)=\frac{\partial p^{\star}}{\partial x}(t, x), \text { for every } c^{\star} \in \partial^{\star} p^{\star}(t, x), \tag{1}\\
\Longrightarrow c^{\star}(t, x)=\left(\frac{\partial u}{\partial x}(t, x, \cdot)\right)^{(-1)}\left(\frac{\partial p^{\star}}{\partial x}(t, x)\right) . \tag{2}
\end{gather*}
$$

Obs: $(1) \Longrightarrow p^{\star}$ is increasing in x.

Proposition 2

For every $p \in \mathcal{P}$ and for almost every $x \in X$, we have

$$
U_{A}(p, x)=\int_{0}^{T} p^{\star}(t, x) \mathrm{d} t,
$$

and the optimal consumption of Agents is given by (2).
(1) Problem and Model
(2) Agent's problem
(3) Principal's problem

4 Agents with CRRA utilities

The set of agents who accept the contract

$$
X^{\star}\left(p^{\star}\right):=\left\{x \in X, P^{\star}(x):=\int_{0}^{T} p^{\star}(t, x) \mathrm{d} t \geq H(x)\right\} .
$$

The principal's problem is
$U_{P}:=\sup _{p \in \mathcal{P}} \int_{0}^{T}\left[\int_{X^{\star}\left(p^{\star}\right)} p\left(t, c^{\star}(t, x)\right) f(x) \mathrm{d} x-K\left(t, \int_{X^{\star}\left(p^{\star}\right)} c^{\star}(t, x) f(x) \mathrm{d} x\right)\right] \mathrm{d} t$.

We solve actually $\widetilde{U}_{P} \geq U_{P}$ where we drop the u-convexity of p.

$$
\widetilde{U}_{P}=\sup _{C^{+}} \int_{0}^{T}\left[\int_{X^{\star}\left(p^{\star}\right)} p\left(t, c^{\star}(t, x)\right) f(x) \mathrm{d} x-K\left(t, \int_{X^{\star}\left(p^{\star}\right)} c^{\star}(t, x) f(x) \mathrm{d} x\right)\right] \mathrm{d} t .
$$

with C^{+}is the space of maps $g:[0, T] \times X \longrightarrow \mathbb{R}$ such that

- $x \longmapsto g(t, x) \in W^{1, m}(0,1)$, for a.e. t.
- $x \longmapsto g(t, x)$ is non-decreasing.
(1) Problem and Model
(2) Agent's problem
(3) Principal's problem

4) Agents with CRRA utilities

- constant H
- general H

We consider $X=[0,1]$, and

$$
u(t, x, c)=g(x) \phi(t) \frac{c^{\gamma}}{\gamma}
$$

- $g: X \rightarrow \mathbb{R}_{+}$continuous and non-decreasing.
- $\phi:[0, T] \longrightarrow \mathbb{R}_{+}^{\star}$ continuous.
- $\gamma \in(0,1)$.

The response of the agent (2) can be written as

$$
c^{\star}(t, x)=\left(\frac{\gamma}{\phi(t) g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x)\right)^{\frac{1}{\gamma}}
$$

The principal's problem in terms of p^{\star} is

$$
\begin{align*}
\widetilde{U}_{P}=\sup _{p^{\star} \in C^{+}} \int_{0}^{T} & {\left[\int_{X^{\star}\left(p^{\star}\right)}\left(\frac{g(x)}{g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x)-p^{\star}(t, x)\right) f(x) \mathrm{d} x\right.} \\
& \left.-K\left(t, \int_{X^{\star}\left(p^{\star}\right)}\left(\frac{\gamma}{\phi(t) g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x)\right)^{\frac{1}{\gamma}} f(x) \mathrm{d} x\right)\right] \mathrm{d} t . \tag{3}
\end{align*}
$$

The response of the agent (2) can be written as

$$
c^{\star}(t, x)=\left(\frac{\gamma}{\phi(t) g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x)\right)^{\frac{1}{\gamma}}
$$

The principal's problem in terms of p^{\star} is

$$
\begin{aligned}
\widetilde{U}_{P}=\sup _{p^{\star} \in C^{+}} \int_{0}^{T} & {\left[\int_{X^{\star}\left(p^{\star}\right)}\left(\frac{g(x)}{g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x)-p^{\star}(t, x)\right) f(x) \mathrm{d} x\right.} \\
& \left.-K\left(t, \int_{X^{\star}\left(p^{\star}\right)}\left(\frac{\gamma}{\phi(t) g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x)\right)^{\frac{1}{\gamma}} f(x) \mathrm{d} x\right)\right] \mathrm{d} t .
\end{aligned}
$$

Recall that

$$
X^{\star}\left(p^{\star}\right)=\left\{x \in[0,1]: P^{\star}(x) \geq H(x)\right\}
$$

Recall that

$$
X^{\star}\left(p^{\star}\right)=\left\{x \in[0,1]: P^{\star}(x) \geq H(x)\right\} .
$$

We study 3 cases for the reservation utility of the agents

1) H is constant.
2) H is strictly concave.
3) H is constant-linear.
4) H is constant. In this case X^{\star} is an interval $\left[x_{0}, 1\right]$.

$$
X^{\star}\left(p^{\star}\right)=\left\{x \in[0,1], P^{\star}(x) \geq H\right\}
$$

Figure : $X^{\star}\left(p^{\star}\right)$ for constant H.

We solve the equivalent formulation of (3)

$$
\left.\begin{array}{rl}
\widetilde{U}_{P}=\sup _{x_{0} \in[0,1]} \sup _{p^{\star} \in C^{+}\left(x_{0}\right)} & \int_{0}^{T}
\end{array}\right]\left[\int_{x_{0}}^{1}\left(\frac{g(x)}{g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x)-p^{\star}(t, x)\right) f(x) \mathrm{d} x\right] \text { (t, } \begin{aligned}
1 & \left.\left.\left(\frac{\gamma}{\phi(t) g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x)\right)^{\frac{1}{\gamma}} f(x) \mathrm{d} x\right)\right] \mathrm{d} t,
\end{aligned}
$$

with

$$
C^{+}\left(x_{0}\right)=\left\{p^{\star} \in C^{+}: X^{\star}\left(p^{\star}\right)=\left[x_{0}, 1\right]\right\} .
$$

We solve the equivalent formulation of (3)

$$
\left.\begin{array}{rl}
\widetilde{U}_{P}=\sup _{x_{0} \in[0,1]} \sup _{p^{\star} \in C^{+}\left(x_{0}\right)} & \int_{0}^{T}
\end{array}\right]\left[\int_{x_{0}}^{1}\left(\frac{g(x)}{g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x)-p^{\star}(t, x)\right) f(x) \mathrm{d} x\right] \text { (t, } \begin{aligned}
& 1 \\
&\left.\left.-K\left(\frac{\gamma}{\phi(t) g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x)\right)^{\frac{1}{\gamma}} f(x) \mathrm{d} x\right)\right] \mathrm{d} t, \tag{4}
\end{aligned}
$$

with

$$
C^{+}\left(x_{0}\right)=\left\{p^{\star} \in C^{+}: X^{\star}\left(p^{\star}\right)=\left[x_{0}, 1\right]\right\} .
$$

i.e.

$$
C^{+}\left(x_{0}\right)=\left\{p^{\star} \in C^{+}: \int_{0}^{T} p^{\star}\left(t, x_{0}\right) \mathrm{d} t=H\right\},
$$

is a closed and convex set.

Which is equivalent, by integration by parts, to

$$
\begin{aligned}
\widetilde{U}_{P}=\sup _{x_{0} \in[0,1]} \sup _{p^{\star} \in C^{+}\left(x_{0}\right)} \int_{0}^{T} & {\left[\int_{x_{0}}^{1} \frac{\left(g(x) f(x)+g^{\prime}(x) F(x)-g^{\prime}(x)\right)}{g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x) \mathrm{d} x\right.} \\
& \left.-K\left(t, \int_{x_{0}}^{1}\left(\frac{\gamma}{\phi(t) g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x)\right)^{\frac{1}{\gamma}} f(x) \mathrm{d} x\right)\right] \mathrm{d} t \\
& +\left(F\left(x_{0}\right)-1\right) H
\end{aligned}
$$

Which is equivalent, by integration by parts, to

$$
\begin{gathered}
\widetilde{U}_{P}=\sup _{x_{0} \in[0,1]} \sup _{p^{\star} \in C^{+}\left(x_{0}\right)}\left[\begin{array}{c}
\int_{0}^{T}\left[\int_{x_{0}}^{1} \frac{\left(g(x) f(x)+g^{\prime}(x) F(x)-g^{\prime}(x)\right)}{g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x) \mathrm{d} x\right. \\
\\
\left.-K\left(t, \int_{x_{0}}^{1}\left(\frac{\gamma}{\phi(t) g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x)\right)^{\frac{1}{\gamma}} f(x) \mathrm{d} x\right)\right] \mathrm{d} t \\
+\left(F\left(x_{0}\right)-1\right) H .
\end{array}\right. \\
:=\Psi_{x_{0}}\left(p^{\star}\right)
\end{gathered}
$$

We solve the following convex optimization problem

$$
\left(P_{x_{0}}\right) \sup _{p^{\star} \in C^{+}\left(x_{0}\right)} \Psi_{x_{0}}\left(p^{\star}\right) .
$$

Sufficient and necessary optimality condition

$$
\begin{gathered}
\Psi_{x_{0}}^{\prime}\left(p^{\star} ; q\right) \leq 0, \forall q \in T_{C^{+}\left(x_{0}\right)}\left(p^{\star}\right) . \\
\Longrightarrow \frac{\partial p^{\star}}{\partial x}(t, x)=\left(\frac{\phi(t)^{\frac{1}{\gamma}}\left[g(x) f(x)+g^{\prime}(x) F(x)-g^{\prime}(x)\right]^{+}}{f(x) \frac{\partial K}{\partial c}\left(t, A\left(t, x_{0}\right)\right)}\right)^{\frac{\gamma}{1-\gamma}} \frac{g^{\prime}(x)}{\gamma},
\end{gathered}
$$

for a continuous map A.

The problem reduces to

$$
\begin{aligned}
& \widetilde{U}_{P}=\sup _{x_{0} \in[0,1]} \int_{0}^{T}\left(\frac{1}{\gamma} \frac{\phi^{\frac{1}{1-\gamma}}(t) \ell\left(x_{0}\right)}{\left(\frac{\partial K}{\partial c}\left(t, A\left(t, x_{0}\right)\right)\right)^{\frac{\gamma}{1-\gamma}}}-K\left(t, \frac{\phi^{\frac{1}{1-\gamma}}(t) \ell\left(x_{0}\right)}{\left(\frac{\partial K}{\partial c}\left(t, A\left(t, x_{0}\right)\right)\right)^{\frac{1}{1-\gamma}}}\right)\right) \mathrm{d} t \\
&+\left(F\left(x_{0}\right)-1\right) H
\end{aligned}
$$

for a continuous function $\ell \Longrightarrow$ it attains its maximum at some x_{0}^{\star}.

Theorem 5

The maximum in \tilde{U}_{P} is attained for the map

$$
p^{\star}(t, x)=H+\int_{x_{0}^{\star}}^{x} g^{\prime}(y)\left(\frac{\phi(t)^{\frac{1}{\gamma}}\left[g(y) f(y)+g^{\prime}(y) F(y)-g^{\prime}(y)\right]^{+}}{\gamma^{\frac{1-\gamma}{\gamma}} f(y) \frac{\partial K}{\partial c}\left(t, A\left(t, x_{0}^{\star}\right)\right)}\right)^{\frac{\gamma}{1-\gamma}} \mathrm{d} y .
$$

Define then p for any $(t, c) \in[0, T] \times \mathbb{R}_{+}$by

$$
p(t, c)=\sup _{x \in[0,1]}\left\{g(x) \phi(t) \frac{c^{\gamma}}{\gamma}-p^{\star}(t, x)\right\} .
$$

If p^{\star} is u-convex, then p is the optimal tariff for the problem U_{P}. Furthermore, the Principal only signs contracts with the Agents of type $x \in\left[x_{0}^{\star}, 1\right]$.

Figure : $X^{\star}\left(p^{\star}\right)=\left[x_{0}^{\star}, 1\right]$.

The company prefers the individuals who can pay more.
2) H is not constant. To avoid complex forms of X^{\star}, we assume that

$$
\frac{g^{\prime}(x)}{g(x)} \geq \frac{H^{\prime}(x)}{H(x)} .
$$

Under this assumption we have the following result

Proposition 3

Let $p^{\star} \in C^{+}$be any function such that the set

$$
Y^{\star}\left(p^{\star}\right):=\left\{x \in[0,1], \int_{0}^{T} p^{\star}(t, x) \mathrm{d} t=H(x)\right\},
$$

has positive Lebesgue measure. Then p^{\star} is not optimal for problem \tilde{U}_{P}.

Thanks to the previous proposition we can redefine C^{+}with the additional condition that the measure of $Y^{\star}\left(p^{\star}\right)$ is zero. For these functions, we define

$$
\widehat{X}^{\star}\left(p^{\star}\right):=X^{\star}\left(p^{\star}\right) \backslash Y^{\star}\left(p^{\star}\right)=\left\{x \in[0,1], P^{\star}(x)>H(x)\right\},
$$

which is an open subset of $[0,1]$.

$$
\Longrightarrow \widehat{X}^{\star}\left(p^{\star}\right)=\left[0, b_{0}\right) \cup \bigcup_{n \geq 1}\left(a_{n}, b_{n}\right) \cup\left(a_{0}, 1\right],
$$

with $a_{0} \in(0,1], b_{0} \in[0,1)$, and $b_{0} \leq a_{n+1} \leq b_{n+1} \leq a_{0}$, for every $n \geq 0$. We denote $a:=\left(a_{n}\right)_{n \geq 0}, b:=\left(b_{n}\right)_{n \geq 0}$ and define \mathcal{A} as the set of such that pairs (a, b).

The equivalent formulation we solve is

$$
\begin{aligned}
& \sup _{(a, b) \in \mathcal{A}} \sup _{p^{\star} \in C^{+}(a, b)} \int_{0}^{T}\left[\int_{X^{\star}(a, b)}\left(\frac{g(x)}{g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x)-p^{\star}(t, x)\right) f(x) \mathrm{d} x\right. \\
&\left.-K\left(t, \int_{X^{\star}(a, b)}\left(\frac{\gamma}{\phi(t) g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x)\right)^{\frac{1}{\gamma}} f(x) \mathrm{d} x\right)\right] \mathrm{d} t
\end{aligned}
$$

where

$$
C^{+}(a, b)=\left\{p^{\star} \in C^{+}: \widehat{X}^{\star}\left(p^{\star}\right)=\left[0, b_{0}\right) \cup \bigcup_{n \geq 1}\left(a_{n}, b_{n}\right) \cup\left(a_{0}, 1\right]\right\}
$$

By integration this can be re-written as

$$
\begin{equation*}
\sup _{(a, b) \in \mathcal{A}} \sup _{p^{\star} \in C^{+}(a, b)} \Psi_{(a, b)}\left(p^{\star}\right) \tag{5}
\end{equation*}
$$

with

$$
\begin{aligned}
\Psi_{(a, b)}\left(p^{\star}\right):= & \int_{0}^{T} \int_{0}^{b_{0}} \frac{\left(g(x) f(x)+g^{\prime}(x) F(x)\right)}{g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x) \mathrm{d} x \mathrm{~d} t \\
& +\int_{0}^{T} \int_{a_{0}}^{1} \frac{\left(g(x) f(x)+g^{\prime}(x) F(x)-g^{\prime}(x)\right)}{g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x) \mathrm{d} x \mathrm{~d} t \\
& +\sum_{n=1}^{\infty} \int_{0}^{T} \int_{a_{n}}^{b_{n}} \frac{\left(g(x) f(x)+g^{\prime}(x) F(x)\right)}{g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x) \mathrm{d} x \mathrm{~d} t \\
& -K\left(t, \int_{X^{\star}(a, b)}\left(\frac{\gamma}{\phi(t) g^{\prime}(x)} \frac{\partial p^{\star}}{\partial x}(t, x)\right)^{\frac{1}{\gamma}} f(x) \mathrm{d} x\right) \mathrm{d} t \\
& +\sum_{n=1}^{\infty} F\left(a_{n}\right) H\left(a_{n}\right)-\sum_{n=1}^{\infty} F\left(b_{n}\right) H\left(b_{n}\right)-F\left(b_{0}\right) H\left(b_{0}\right)+\left(F\left(a_{0}\right)-1\right) H\left(a_{0}\right) .
\end{aligned}
$$

For fixed $(a, b) \in \mathcal{A}$, we consider the problem

$$
\left(P_{a, b}\right) \sup _{p^{\star} \in C^{+}(a, b)} \Psi_{(a, b)}\left(p^{\star}\right) .
$$

Since the set $C^{+}(a, b)$ is very complicated, we need to do local perturbations to obtain optimality conditions providing valuable information.

Theorem 6
Let p^{\star} be the solution of $\left(P_{a, b}\right)$. Then for every $x \in X^{\star}(a, b)$, if $P^{\star}(x)>H(x)$

$$
\frac{\partial p^{\star}}{\partial x}(t, x)=\left\{\begin{array}{l}
\left(\frac{\phi(t)^{\frac{1}{\gamma}}\left[g(x) f(x)+g^{\prime}(x) F(x)\right]^{+}}{f(x) \frac{\partial K}{\partial c}(t, A(t, a, b))}\right)^{\frac{\gamma}{1-\gamma}} \frac{g^{\prime}(x)}{\gamma}, \text { if } x \in\left(0, b_{0}\right) \cup \bigcup_{n}\left(a_{n}, b_{n}\right), \\
\left(\frac{\phi(t)^{\frac{1}{\gamma}}\left[g(x) f(x)+g^{\prime}(x) F(x)-g^{\prime}(x)\right]^{+}}{f(x) \frac{\partial K}{\partial c}(t, A(t, a, b))}\right)^{\frac{\gamma}{1-\gamma}} \frac{g^{\prime}(x)}{\gamma}, \text { if } x \in\left(a_{0}, 1\right),
\end{array}\right.
$$

for a continuous function A.

Theorem 6
Let p^{\star} be the solution of $\left(P_{a, b}\right)$. Then for every $x \in X^{\star}(a, b)$, if $P^{\star}(x)>H(x)$

$$
\frac{\partial p^{\star}}{\partial x}(t, x)=\left\{\begin{array}{l}
\left(\frac{\phi(t)^{\frac{1}{\gamma}}\left[g(x) f(x)+g^{\prime}(x) F(x)\right]^{+}}{f(x) \frac{\partial K}{\partial c}(t, A(t, a, b))}\right)^{\frac{\gamma}{1-\gamma}} \frac{g^{\prime}(x)}{\gamma}, \text { if } x \in\left(0, b_{0}\right) \cup \bigcup_{n}\left(a_{n},\right. \\
\left(\frac{\phi(t)^{\frac{1}{\gamma}}\left[g(x) f(x)+g^{\prime}(x) F(x)-g^{\prime}(x)\right]^{+}}{f(x) \frac{\partial K}{\partial c}(t, A(t, a, b))}\right)^{\frac{\gamma}{1-\gamma}} \frac{g^{\prime}(x)}{\gamma}, \text { if } x \in\left(a_{0}, 1\right),
\end{array}\right.
$$

for a continuous function A.

Since the optimization over \mathcal{A} can be extremely difficult, we assume that the following maps

$$
\begin{aligned}
& v_{1}(x):=g^{\prime}(x)\left(\frac{\left[g(x) f(x)+g^{\prime}(x) F(x)\right]^{+}}{f(x)}\right)^{\frac{\gamma}{1-\gamma}} \\
& v_{2}(x):=g^{\prime}(x)\left(\frac{\left[g(x) f(x)+g^{\prime}(x) F(x)-g^{\prime}(x)\right]^{+}}{f(x)}\right)^{\frac{\gamma}{1-\gamma}},
\end{aligned}
$$

are non-decreasing on $[0,1]$.
\Longrightarrow the optimal P^{\star} is convex on intervals where $P^{\star}>H$.
2.1) H is strictly concave.

Figure : $\widehat{X}^{\star}\left(p^{\star}\right)$ for strictly concave H.

$$
\Longrightarrow \widehat{X}^{\star}\left(p^{\star}\right)=\left[0, b_{0}\right) \cup\left(a_{0}, 1\right], \quad 0 \leq b_{0} \leq a_{0} \leq 1 .
$$

Define the set

$$
\mathcal{A}_{2}:=\left\{(a, b) \in[0,1]^{2}, b \leq a\right\} .
$$

Problem (5) reduces to

$$
\begin{aligned}
& \sup _{\left(a_{0}, b_{0}\right) \in \mathcal{A}_{2}} \int_{0}^{T}\left[\frac{\phi(t)^{\frac{1}{1-\gamma}} \ell\left(a_{0}, b_{0}\right)}{\gamma\left(\frac{\partial K}{\partial c}\left(t, A\left(t, a_{0}, b_{0}\right)\right)\right)^{\frac{\gamma}{1-\gamma}}}-K\left(t, \frac{\phi(t)^{\frac{1}{1-\gamma}} \ell\left(a_{0}, b_{0}\right)}{\left(\frac{\partial K}{\partial c}\left(t, A\left(t, a_{0}, b_{0}\right)\right)\right)^{\frac{1}{1-\gamma}}}\right)\right] \mathrm{d} t \\
& \quad+\theta\left(a_{0}, b_{0}\right) .
\end{aligned}
$$

Where ℓ and θ are continuous on $[0,1]^{2}$ so the supremum over the compact set above is attained at some $\left(a_{0}^{\star}, b_{0}^{\star}\right) \in \mathcal{A}_{2}$.

Theorem 7

If the following holds

$$
H\left(b_{0}^{\star}\right)-\frac{\phi(t)^{\frac{1}{1-\gamma}}}{\gamma\left(\frac{\partial K}{\partial c}\left(t, A\left(t, a_{0}^{\star}, b_{0}^{\star}\right)\right)\right)^{\frac{\gamma}{1-\gamma}}} \int_{0}^{b_{0}^{\star}} v_{1}(y) \mathrm{d} y>H(0), t \in[0, T]
$$

the maximum in (5) is attained for the map

$$
p^{\star}(t, x)=\left\{\begin{array}{l}
H\left(b_{0}^{\star}\right)-\frac{\phi(t)^{\frac{1}{1-\gamma}}}{\gamma\left(\frac{\partial K}{\partial c}\left(t, A\left(t, a_{0}^{\star}, b_{0}^{\star}\right)\right)\right)^{\frac{\gamma}{1-\gamma}}} \int_{x}^{b_{0}^{\star}} v_{1}(y) \mathrm{d} y, \text { if } x \in\left[0, b_{0}^{\star}\right), \\
\tilde{p}^{\star}(t, x)<H(x), \text { if } x \in\left[b_{0}^{\star}, a_{0}^{\star}\right], \\
H\left(a_{0}^{\star}\right)+\frac{\phi(t)^{\frac{1}{1-\gamma}}}{\gamma\left(\frac{\partial K}{\partial c}\left(t, A\left(t, a_{0}^{\star}, b_{0}^{\star}\right)\right)\right)^{\frac{\gamma}{1-\gamma}}} \int_{a_{0}^{\star}}^{x} v_{2}(y) \mathrm{d} y, \text { if } x \in\left(a_{0}^{\star}, 1\right] .
\end{array}\right.
$$

Theorem 7

Otherwise, it is attained for

$$
p^{\star}(t, x)=\left\{\begin{array}{l}
\tilde{p}^{\star}(t, x)<H(x), \text { if } x \in\left[0, a_{0}^{\star}\right], \\
H\left(a_{0}^{\star}\right)+\frac{\phi(t)^{\frac{1}{1-\gamma}}}{\gamma\left(\frac{\partial K}{\partial c}\left(t, A\left(t, a_{0}^{\star}, b_{0}^{\star}\right)\right)\right)^{\frac{\gamma}{1-\gamma}}} \int_{a_{0}^{\star}}^{x} v_{2}(y) \mathrm{d} y, \text { if } x \in\left(a_{0}^{\star}, 1\right] .
\end{array}\right.
$$

Define then p, for any $(t, c) \in[0, T] \times \mathbb{R}_{+}$, by

$$
p(t, c):=\sup _{x \in[0,1]}\left\{g(x) \phi(t) \frac{c^{\gamma}}{\gamma}-p^{\star}(t, x)\right\} .
$$

If p^{\star} is u-convex, then p is the optimal tariff for the problem U_{P}. Furthermore, the Principal only signs contracts with the Agents of type $x \in\left[0, b_{0}^{\star}\right] \cup\left[a_{0}^{\star}, 1\right]$ in the first case and with the Agents of type $x \in\left[a_{0}^{\star}, 1\right]$ in the second case.

Figure : $\widehat{X}^{\star}\left(p^{\star}\right)$ for strictly concave H.

The company prefers the individuals who can pay more and the ones who are not so difficult to satisfy.
2.2) H is constant-linear.

$$
H(x)=\left\{\begin{array}{l}
\beta, \text { if } x \in\left[0, x_{h}\right], \\
\alpha\left(x-x_{h}\right)+\beta, \text { if } x \in\left[x_{h}, 1\right],
\end{array}\right.
$$

where $\alpha, \beta \geq 0$ and where $x_{h} \in[0,1]$.

Figure : $X^{\star}\left(p^{\star}\right)$ for a "constant-linear" H.

$$
\Longrightarrow X^{\star}\left(p^{\star}\right)=\left[a_{1}, a_{2}\right] \cup\left[a_{3}, 1\right], \quad 0 \leq a_{1} \leq x_{h} \leq a_{2} \leq a_{3} \leq 1 .
$$

Let us then define the set

$$
\mathcal{A}_{3}:=\left\{(a, b, c) \in[0,1]^{3}, a \leq x_{h} \leq b \leq c\right\} .
$$

Problem (5) becomes

$$
\begin{aligned}
\sup _{\left(a_{1}, a_{2}, a_{3}\right) \in \mathcal{A}_{3}} \int_{0}^{T} & {\left[\frac{\phi(t)^{\frac{1}{1-\gamma}} \ell\left(a_{1}, a_{2}, a_{3}\right)}{\gamma\left(\frac{\partial K}{\partial c}\left(t, A\left(t, a_{1}, a_{2}, a_{3}\right)\right)\right)^{\frac{\gamma}{1-\gamma}}}\right.} \\
& \left.-K\left(t, \frac{\phi(t)^{\frac{1}{1-\gamma}} \ell\left(a_{1}, a_{2}, a_{3}\right)}{\left(\frac{\partial K}{\partial c}\left(t, A\left(t, a_{1}, a_{2}, a_{3}\right)\right)^{\frac{1}{1-\gamma}}\right.}\right)\right] \mathrm{d} t+\theta\left(a_{1}, a_{2}, a_{3}\right),
\end{aligned}
$$

for some continuous maps A, θ and ℓ.

Merci de votre attention!

Appendix.

For every $\left(t, x_{0}\right) \in[0, T] \times[0,1]$
$A\left(t, x_{0}\right)=g_{K}^{(-1)}\left(\phi^{\frac{1}{1-\gamma}}(t) \int_{x_{0}}^{1}\left(\frac{\left[g_{\gamma}(x) f(x)+g_{\gamma}^{\prime}(x) F(x)-g_{\gamma}^{\prime}(x)\right]^{+}}{f^{\gamma}(x)}\right)^{\frac{1}{1-\gamma}} \mathrm{d} x\right)$,

$$
g_{K}(c):=c\left(\frac{\partial K}{\partial c}(t, c)\right)^{\frac{1}{1-\gamma}}, c \geq 0
$$

and

$$
\ell\left(x_{0}\right):=\int_{x_{0}}^{1}\left(\frac{\left[g(x) f(x)+g^{\prime}(x) F(x)-g^{\prime}(x)\right]^{+}}{f^{\gamma}(x)}\right)^{\frac{1}{1-\gamma}} \mathrm{d} x .
$$

For any $\left(t, a_{0}, b_{0}\right) \in[0, T] \times \mathcal{A}_{2}$

$$
\begin{aligned}
A\left(t, a_{0}, b_{0}\right):= & g_{K}^{(-1)}\left(\phi(t)^{\frac{1}{1-\gamma}} \int_{0}^{b_{0}}\left(\frac{\left[g(x) f(x)+g^{\prime}(x) F(x)\right]^{+}}{f^{\gamma}(x)}\right)^{\frac{1}{1-\gamma}} \mathrm{d} x\right. \\
& \left.+\phi(t)^{\frac{1}{1-\gamma}} \int_{a_{0}}^{1}\left(\frac{\left[g(x) f(x)+g^{\prime}(x) F(x)-g^{\prime}(x)\right]^{+}}{f^{\gamma}(x)}\right)^{\frac{1}{1-\gamma}} \mathrm{d} x\right), \\
\ell\left(a_{0}, b_{0}\right):= & \int_{0}^{b_{0}}\left(\frac{\left[g(x) f(x)+g^{\prime}(x) F(x)\right]^{+}}{f^{\gamma}(x)}\right)^{\frac{1}{1-\gamma}} \mathrm{d} x \\
& +\int_{a_{0}}^{1}\left(\frac{\left[g(x) f(x)+g^{\prime}(x) F(x)-g^{\prime}(x)\right]^{+}}{f^{\gamma}(x)}\right)^{\frac{1}{1-\gamma}} \mathrm{d} x,
\end{aligned}
$$

$$
\theta\left(a_{0}, b_{0}\right):=-F\left(b_{0}\right) H\left(b_{0}\right)+\left(F\left(a_{0}\right)-1\right) H\left(a_{0}\right) .
$$

For any $\left(t, a_{1}, a_{2}, a_{3}\right) \in[0, T] \times \mathcal{A}_{3}$

$$
\begin{aligned}
\ell\left(a_{1}, a_{2}, a_{3}\right):= & \int_{a_{1}}^{a_{2}}\left(\frac{\left[g(x) f(x)+g^{\prime}(x) F(x)\right]^{+}}{f^{\gamma}(x)}\right)^{\frac{1}{1-\gamma}} \mathrm{d} x \\
& +\int_{a_{3}}^{1}\left(\frac{\left[g(x) f(x)+g^{\prime}(x) F(x)-g^{\prime}(x)\right]^{+}}{f^{\gamma}(x)}\right)^{\frac{1}{1-\gamma}} \mathrm{d} x, \\
\theta\left(a_{1}, a_{2}, a_{3}\right):= & F\left(a_{1}\right) H\left(a_{1}\right)-F\left(a_{2}\right) H\left(a_{2}\right)+\left(F\left(a_{3}\right)-1\right) H\left(a_{3}\right), \\
A\left(t, a_{1}, a_{2}, a_{3}\right):= & g_{K}^{(-1)}\left(\phi(t)^{\frac{1}{1-\gamma}} \int_{a_{1}}^{a_{2}}\left(\frac{\left[g(x) f(x)+g^{\prime}(x) F(x)\right]^{+}}{f^{\gamma}(x)}\right)^{\frac{1}{1-\gamma}} \mathrm{d} x\right. \\
& \left.\quad+\phi(t)^{\frac{1}{1-\gamma}} \int_{a_{3}}^{1}\left(\frac{\left[g(x) f(x)+g^{\prime}(x) F(x)-g^{\prime}(x)\right]^{+}}{f^{\gamma}(x)}\right)^{\frac{1}{1-\gamma}} \mathrm{d} x\right) .
\end{aligned}
$$

Theorem 8
Let $f(x)=1, g(x)=x$ and the cost function K be given, for some $n>1$, by

$$
K(t, c):=k(t) \frac{c^{n}}{n} .
$$

Then, the optimal tariff $p \in \mathcal{P}$ is given for any $(t, c) \in[0, T] \times \mathbb{R}_{+}$by
$p(t, c)=\left\{\begin{array}{l}\phi(t) \frac{c^{\gamma}}{\gamma}+M(t)\left(\left(2 x_{0}^{\star}-1\right)^{\frac{1}{1-\gamma}}-1\right)-h(t), \text { if } c>\left(\frac{2 \gamma M(t)}{(1-\gamma) \phi(t)}\right)^{\frac{1}{\gamma}}, \\ \phi(t) \frac{c^{\gamma}}{2 \gamma}+c\left(\left(\frac{\phi(t)}{2}\right)^{\frac{1}{1-\gamma}} \frac{1-\gamma}{\gamma M(t)}\right)^{\frac{1-\gamma}{\gamma}}-h(t)+M(t)\left(2 x_{0}^{\star}-1\right)^{\frac{1}{1-\gamma}}, \text { if not, }\end{array}\right.$
where $M(t)=\frac{1-\gamma}{2 \gamma}\left(\frac{2(2-\gamma)}{1-\gamma}\right)^{\frac{\gamma(n-1)}{n-\gamma}}\left(\frac{\phi^{n}(t)}{k^{\gamma}(t)}\right)^{\frac{1}{n-\gamma}}\left(1-\left(2 x_{0}^{\star}-1\right)^{\frac{2-\gamma}{1-\gamma}}\right)^{-\frac{\gamma(n-1)}{n-\gamma}}$, and where x_{0}^{\star} is the unique solution in $(1 / 2,1)$ of the equation

$$
\int_{0}^{T} h(t) \mathrm{d} t=2 n A(T) \frac{2-\gamma}{n-\gamma}\left(2 x_{0}^{\star}-1\right)^{\frac{1}{1-\gamma}}\left(1-\left(2 x_{0}^{\star}-1\right)^{\frac{2-\gamma}{1-\gamma}}\right)^{-\frac{\gamma(n-1)}{n-\gamma}}
$$

Furthermore, only the Agents of type $x \geq x_{0}^{\star}$ will accept the contract.

