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Motivation

PDE characterization : linear exmaple

Linear Expectation

v(t, x) = E
[
h(W T )

∣∣Wt = x
]

Heat Equation

−∂tu − 1
2D

2
xu = 0, u(T , x) = h(x)

PDE characterization

Function v is C 1,2, and is a classical solution of the heat equation.

In the linear case, the martingale characterization as an alternative gives
quite a lot analytic insight, and can be naturally generalized to the
non-Markovian case.
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Motivation

PDE characterization : beyond the linear case

Consider a controlled diffusion:
Xκ
t = X0 +

∫ t
0 b(s,Xκ

s , κs)ds +
∫ t
0 σ(s,Xκ

s , κs)dWs

for κ ∈ K = {κ : κt ∈ K for all t ∈ [0,T ]}.

Value function of optimal control

v(t, x) = supκ∈KE
[ ∫ T

t f (s,Xκ
s , κs)ds + h(Xκ

T )
∣∣Xκ

t = x
]

Hamilton-Jacobi-Bellman Equation

∂tu + supk∈K
{
b · Du + 1

2Tr
(
(σσT)D2u

)
+ f
}

= 0, u(T , x) = h(x).

PDE characterization (under some conditions)

Function v is a viscosity solution of the HJB equation.
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Motivation

Non-Markovian model

Consider the diffusion X controlled with delay:
Xκ
t = X0 +

∫ t
0 b(s,Xκ

s−δ, κs)ds +
∫ t
0 σ(s,Xκ

s−δ, κs)dWs , κ ∈ K

Value function of optimal control

vt = supκ∈K E
[ ∫ T

t f (s,Xκ
s−δ, κs)ds + h(Xκ

T )
∣∣Ft

]
It is IMPOSSIBLE to find a corresponding PDE of finite dimension state
space !
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Motivation

A first meeting with Path-dependent PDE (PPDE)

Linear Expectation: non-Markovian

v(t, ω) = E
[
ξ(WT∧·)

∣∣Ft

]
(ω)

(Path-dependent) Heat Equation

−∂tu− 1
2∂

2
ωωu = 0, u(T , ω) = ξ(ω)

How to make sense the equation (definition & existence/uniqueness)?
Dupire derviatives, functional Itô calculus ⇒ classical solution

Is there nonlinear extension ?

Introduce viscosity solutions to PPDE’s
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Is there nonlinear extension ?

Introduce viscosity solutions to PPDE’s

Zhenjie Ren PPDE Le Mans, 29/06/2016 6 / 21



Motivation

A first meeting with Path-dependent PDE (PPDE)

Linear Expectation: non-Markovian

v(t, ω) = E
[
ξ(WT∧·)

∣∣Ft

]
(ω)

(Path-dependent) Heat Equation

−∂tu− 1
2∂

2
ωωu = 0, u(T , ω) = ξ(ω)

How to make sense the equation (definition & existence/uniqueness)?
Dupire derviatives, functional Itô calculus ⇒ classical solution
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From PDE to PPDE

‘The’ unique well-defined solution

Consider the first order nonlinear equation with the boundary conditions:

−|Du(x)| = −1, x ∈ (−1, 1), u(−1) = u(1) = 1

There is no smooth function, but infinite a.s. smooth functions satisfying
this equation. Is there a criteria which can select a unique solution?

Maximum Principle (Elliptic)

maxx∈O u(x) = maxx∈∂O u(x), ∀O ⊂ [−1, 1] compact.

Only one continuous solution fits the maximum principle: u(x) = |x |.
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From PDE to PPDE

Why ‘the’ unique solution?

Add a perturbation to the previous equation:

−|Duε(x)|−ε∆uε = −1, x ∈ (−1, 1), uε(−1) = uε(1) = 1

The unique solution is uε(x) = |x |−εe−1/ε + εe−|x |/ε−→ u(x). The
unique solution satisfying the maximum principle is stable under the
perturbation ! Btw, that’s where the name ‘viscosity solution’ comes from
(see e.g. from inviscid Burger’s eq. to viscous Burger’s eq.).

However, the maximum principle as a criteria is NOT easy to verify a
priori. It is more like a property instead of a definition of solutions.
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From PDE to PPDE

Wait... The simple example can tell more...

Consider the perturbation with negative Laplacian:

−|Dv ε(x)|+ε∆v ε = −1, x ∈ (−1, 1), v ε(−1) = v ε(1) = 1

The solutions are v ε(x) = 2− uε(x) converging to 2− u(x).
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−|Du| ≤,≥ − 1 and |Dv | ≤,≥ 1

A good definition of viscosity solution should treat the sub-eq. and the
super-eq. separately.
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From PDE to PPDE

Test functions of viscosity solutions (heat equation)

Consider the heat equation : −Lu := −(∂tu + 1
2∆u) = 0, u(T , ·) = g .

To define a weak solution, first define the test functions.

Consider all the
smooth functions tangent to u from above at point (t, x), namely,

Au(t, x) := {ϕ ∈ C 1,2 : 0 = (u − ϕ)(t, x) = max
s,y

(u − ϕ)(s, y)}

Let W be a Brownian motion. As a solution of the heat eq.,
{u(t + s, x + Ws)}s is naturally a martingale. Therefore, we have

−ϕ(t, x) ≥ E[(u − ϕ)(t + τ, x + Wτ )− u(t, x)] = E[−ϕ(t + τ, x + Wτ )],∀τ

Then Itô formula implies that
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To define a weak solution, first define the test functions. Consider all the
smooth functions tangent to u in average from above at point (t, x), namely,

Au(t, x) := {ϕ ∈ C 1,2 : (u − ϕ)(t, x) = max
τ

E[(u − ϕ)(t + τ, x + Wτ )]}

Let W be a Brownian motion. As a solution of the heat eq.,
{u(t + s, x + Ws)}s is naturally a martingale. Therefore, we have

−ϕ(t, x) ≥ E[(u − ϕ)(t + τ, x + Wτ )− u(t, x)] = E[−ϕ(t + τ, x + Wτ )], ∀τ
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From PDE to PPDE

Definition of viscosity solutions (heat equation)

Based on the previous observation, we may guess a definition for the
viscosity solution of the heat eq.

Let P0 be the Wiener’s measure.

Definition (Viscosity solution of heat eq.)

Function u is continuous.

u is a viscosity sub-solution if −Lϕ(t, x) ≤ 0, ∀t, x , ϕ ∈ Au(t, x)

v is a viscosity super-solution if −Lϕ(t, x) ≥ 0, ∀t, x , ϕ ∈ Av(t, x)

u is a viscosity solution if u is both visco. sub- and super-solution.

Is it a good definition ?

Is there a unique solution?

Does it satisfy the maximum principle?
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From PDE to PPDE

Two puzzles merge into one : Comparison Principle

Comparison principle

Let u, v be (P0-)viscosity sub-/super-solution, respectively. Given the fact
u(T , ·) ≤ v(T , ·), then we have u ≤ v everywhere.

• The comparison principle directly leads to the uniqueness of the
(P0-)viscosity solutions to the Dirichlet problem.

• Take the constant function v ≡ maxy u(T , y). Then v is a
(super)solution to the heat equation and u(T , ·) ≤ v . By the comparison
principle, we obtain u(·, ·) ≤ v , i.e.

Maximum principle (Parabolic)

Let u be (P0-)viscosity solution. We have maxt≤T ,xu(t, x) = maxxu(T , x).
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From PDE to PPDE

Proof of comparison for P0-viscosity solutions

By an optimal stopping argument, we may easily prove:

Theorem

Under some integrability condition, the following properties are equivalent:
• u is a P0-visco.super-(sub-)solution to the heat equation;
• u(t,Wt) is a super-(sub-)martingale.

Proof of comparison : Let u, v be P0-visco-sub/super-solution
respectively and assume that u(T , ·) ≤ v(T , ·). Since u(t,Wt) is a
submartingale and v(t,Wt) is a supermartingale, we have

u(t, x) ≤ E[u(T ,WT )|Wt = x ] ≤ E[v(T ,WT )|Wt = x ] ≤ v(t, x)
for all t, x .

Zhenjie Ren PPDE Le Mans, 29/06/2016 14 / 21



From PDE to PPDE

Proof of comparison for P0-viscosity solutions

By an optimal stopping argument, we may easily prove:

Theorem

Under some integrability condition, the following properties are equivalent:
• u is a P0-visco.super-(sub-)solution to the heat equation;
• u(t,Wt) is a super-(sub-)martingale.

Proof of comparison : Let u, v be P0-visco-sub/super-solution
respectively and assume that u(T , ·) ≤ v(T , ·). Since u(t,Wt) is a
submartingale and v(t,Wt) is a supermartingale, we have

u(t, x) ≤ E[u(T ,WT )|Wt = x ] ≤ E[v(T ,WT )|Wt = x ] ≤ v(t, x)
for all t, x .

Zhenjie Ren PPDE Le Mans, 29/06/2016 14 / 21



From PDE to PPDE

Why we prefer the P0-viscosity solution definition?

By considering the test functions tangent in mean value instead of those
tangent point-wisely, we have more test functions, and so fewer visco-sub-
or super-solutions. Intuitively, it helps to prove the comparison principle.

Technically, by considering the test functions tangent in mean value, we
overcome the following difficulty:

PDE

Real space is locally compact

∃ x = argmaxy∈Ou(y)

Path dependent PDE

Path space is NOT

∃ τ∗ = argmaxτ EP0 [uτ ]
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From PDE to PPDE

Non-Markovian and non-linear extensions

The definition of P0-viscosity solution leads to ‘the’ unique solution of the
heat eq. We are next concerned with

Extension to the path-dependent context (i.e. −∂tu − ∂2
ωωu = 0)

replace the smooth test functions on the real space by the ones on
the path space (Dupire derivatives), or just consider the paraboloids
ϕa,b,c(t, ω) = at + b · ωt + 1

2ω
T
t cωt as the test functions

Extension to the nonlinear equations (i.e. −∂tu−G(t, ω, u, ∂ωu, ∂
2
ωωu) = 0)

replace the linear expectation EP0 by the nonlinear ones EP or EP ,

where EP := supP∈P EP, EP := infP∈P EP, and P is a family of
continuous semi-martingale measures.

We can prove comparison results under appropriate conditions on G .
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Application in the control problems with delays

How much the delay matters?

Consider the control problems with delays corresponding to the PPDE

−∂tuδ − G (t, ωt−δ, ∂
2
ωωu

δ) = 0, uδ(T , ωT ) = h(ωT )

The P-viscosity solutions uδ converge to u, the solution of the PDE

−∂tu − G (t, x ,D2u) = 0, u(T , x) = h(x)

We are concerned with the convergence rate: limδ→0
uδ−u
δ ?

Define Hδt := 1
δ
E
[ ∫ T

t
(G(t,Xt−δ, u(t,Xt))− G(t,Xt , u(t,Xt)))

∣∣Ft

]
, where

dXt = (2Gγ(t,Xt , u(t,Xt)))
1
2 dWt

Under appropriate conditions (regularity of G , u), we may prove that

limδ→0
uδ−u
δ = limδ→0H

δ and the r.h.s. can be calculated explicitly.
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Application in the control problems with delays

Intuitive proof

Define v δ := uδ−u
δ − Hδ and v := limδ→0 v

δ.

∂tv
δ =

1

δ
(∂tu

δ − ∂tu)− ∂tHδ

=
1

δ

(
G(t, ωt ,D

2u)− G(t, ωt−δ, ∂
2
ωωu

δ)
)
− ∂tHδ

= −1

δ

(
G(t, ωt−δ,D

2u)− G(t, ωt−δ, ∂
2
ωωu

δ)
)

+
1

δ

(
G(t, ωt ,D

2u)− G(t, ωt−δ,D
2u)
)
− ∂tHδ

= −Gγ(t, ωt ,D
2u)∂2

ωωv
δ−Gγ(t, ωt ,D

2u)∂2
ωωH

δ + o(1)

+
1

δ

(
G(t, ωt ,D

2u)− G(t, ωt−δ,D
2u)
)
− ∂tHδ

= −Gγ(t, ωt ,D
2u)∂2

ωωv
δ + o(1)

By stability argument, we may prove ∂tv + Gγ(t, ωt ,D
2u)∂2ωωv = 0.

Taking into account that vT = 0, we obtain v ≡ 0.
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Application in the control problems with delays

To be continue

Since 2012,

Ekren, Keller, Touzi, Zhang introduced visco-sol of PPDE

Comparison for fully nonlinear PPDE (under technical conditions, e.g.
non-degenerate), Ekren, Touzi, Zhang

Comparison for semilinear PPDE, R., Touzi, Zhang

Perron’s method for the existence of visco-sol to semilinear PPDE, R.

Monotone scheme for PPDE, Zhang, Zhuo / R., Tan

Some extensions: Elliptic PPDE, R.; Variational inequality, Ekren;
Integro-differential equation, Keller; etc.

Application in non-Markov large deviation, Ma, R., Touzi, Zhang;
Application in stochastic differential games, Pham, Zhang

Comparison for fully nonlinear PPDE (dp), R., Touzi, Zhang

Convergence rate from a delayed control problem to a non-delay
control problem, R., Touzi, Zhang

...
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Thank you for your attention!
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