Viscosity Solutions of Path-Dependent PDEs

Zhenjie Ren
CMAP, Ecole Polytechnique

The 3rd young researchers meeting in Probability, Numerics and Finance June 29, 2016

Table of Contents

(1) Motivation

(3) Application in the control problems with delays

PDE characterization : linear exmaple

> Linear Expectation
> $v(t, x)=\mathbb{E}\left[h\left(W_{T}\right) \mid W_{t}=x\right]$

PDE characterization : linear exmaple

Linear Expectation

$v(t, x)=\mathbb{E}\left[h\left(W_{T}\right) \mid W_{t}=x\right]$

Heat Equation

$-\partial_{t} u-\frac{1}{2} D_{x}^{2} u=0, u(T, x)=h(x)$

PDE characterization : linear exmaple

Linear Expectation

$v(t, x)=\mathbb{E}\left[h\left(W_{T}\right) \mid W_{t}=x\right]$

Heat Equation

$-\partial_{t} u-\frac{1}{2} D_{x}^{2} u=0, u(T, x)=h(x)$

PDE characterization

Function v is $C^{1,2}$, and is a classical solution of the heat equation.

PDE characterization : linear exmaple

Linear Expectation

$v(t, x)=\mathbb{E}\left[h\left(W_{T}\right) \mid W_{t}=x\right]$

Heat Equation

$-\partial_{t} u-\frac{1}{2} D_{x}^{2} u=0, u(T, x)=h(x)$

PDE characterization

Function v is $C^{1,2}$, and is a classical solution of the heat equation.

In the linear case, the martingale characterization as an alternative gives quite a lot analytic insight, and can be naturally generalized to the non-Markovian case.

PDE characterization : beyond the linear case

Consider a controlled diffusion:

$$
X_{t}^{\kappa}=X_{0}+\int_{0}^{t} b\left(s, X_{s}^{\kappa}, \kappa_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{\kappa}, \kappa_{s}\right) d W_{s}
$$

for $\kappa \in \mathcal{K}=\left\{\kappa: \kappa_{t} \in K\right.$ for all $\left.t \in[0, T]\right\}$.
Value function of optimal control
$v(t, x)=\sup _{\kappa \in \mathcal{K}} \mathbb{E}\left[\int_{t}^{T} f\left(s, X_{s}^{\kappa}, \kappa_{s}\right) d s+h\left(X_{T}^{\kappa}\right) \mid X_{t}^{\kappa}=x\right]$

PDE characterization : beyond the linear case

Consider a controlled diffusion:

$$
X_{t}^{\kappa}=X_{0}+\int_{0}^{t} b\left(s, X_{s}^{\kappa}, \kappa_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{\kappa}, \kappa_{s}\right) d W_{s}
$$

for $\kappa \in \mathcal{K}=\left\{\kappa: \kappa_{t} \in K\right.$ for all $\left.t \in[0, T]\right\}$.
Value function of optimal control
$v(t, x)=\sup _{\kappa \in \mathcal{K}} \mathbb{E}\left[\int_{t}^{T} f\left(s, X_{s}^{\kappa}, \kappa_{s}\right) d s+h\left(X_{T}^{\kappa}\right) \mid X_{t}^{\kappa}=x\right]$

Hamilton-Jacobi-Bellman Equation
$\partial_{t} u+\sup _{k \in K}\left\{b \cdot D u+\frac{1}{2} \operatorname{Tr}\left(\left(\sigma \sigma^{\mathrm{T}}\right) D^{2} u\right)+f\right\}=0, \quad u(T, x)=h(x)$.

PDE characterization: beyond the linear case

Consider a controlled diffusion:

$$
X_{t}^{\kappa}=X_{0}+\int_{0}^{t} b\left(s, X_{s}^{\kappa}, \kappa_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{\kappa}, \kappa_{s}\right) d W_{s}
$$

for $\kappa \in \mathcal{K}=\left\{\kappa: \kappa_{t} \in K\right.$ for all $\left.t \in[0, T]\right\}$.
Value function of optimal control
$v(t, x)=\sup _{\kappa \in \mathcal{K}} \mathbb{E}\left[\int_{t}^{T} f\left(s, X_{s}^{\kappa}, \kappa_{s}\right) d s+h\left(X_{T}^{\kappa}\right) \mid X_{t}^{\kappa}=x\right]$

Hamilton-Jacobi-Bellman Equation
$\partial_{t} u+\sup _{k \in K}\left\{b \cdot D u+\frac{1}{2} \operatorname{Tr}\left(\left(\sigma \sigma^{\mathrm{T}}\right) D^{2} u\right)+f\right\}=0, \quad u(T, x)=h(x)$.

PDE characterization

Function v is a viscosity solution of the HJB equation.

Non-Markovian model

Consider the diffusion X controlled with delay: $X_{t}^{\kappa}=X_{0}+\int_{0}^{t} b\left(s, X_{s-\delta}^{\kappa}, \kappa_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s-\delta}^{\kappa}, \kappa_{s}\right) d W_{s}, \quad \kappa \in \mathcal{K}$

Non-Markovian model

Consider the diffusion X controlled with delay: $X_{t}^{\kappa}=X_{0}+\int_{0}^{t} b\left(s, X_{s-\delta}^{\kappa}, \kappa_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s-\delta}^{\kappa}, \kappa_{s}\right) d W_{s}, \quad \kappa \in \mathcal{K}$

Value function of optimal control
$v_{t}=\sup _{\kappa \in \mathcal{K}} \mathbb{E}\left[\int_{t}^{T} f\left(s, X_{s-\delta}^{\kappa}, \kappa_{s}\right) d s+h\left(X_{T}^{\kappa}\right) \mid \mathcal{F}_{t}\right]$

Non-Markovian model

Consider the diffusion X controlled with delay:
$X_{t}^{\kappa}=X_{0}+\int_{0}^{t} b\left(s, X_{s-\delta}^{\kappa}, \kappa_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s-\delta}^{\kappa}, \kappa_{s}\right) d W_{s}, \quad \kappa \in \mathcal{K}$
Value function of optimal control
$v_{t}=\sup _{\kappa \in \mathcal{K}} \mathbb{E}\left[\int_{t}^{T} f\left(s, X_{s-\delta}^{\kappa}, \kappa_{s}\right) d s+h\left(X_{T}^{\kappa}\right) \mid \mathcal{F}_{t}\right]$

It is IMPOSSIBLE to find a corresponding PDE of finite dimension state space!

A first meeting with Path-dependent PDE (PPDE)

Linear Expectation: non-Markovian $v(t, \omega)=\mathbb{E}\left[\xi\left(W_{T \wedge}\right) \mid \mathcal{F}_{t}\right](\omega)$

A first meeting with Path-dependent PDE (PPDE)

Linear Expectation: non-Markovian
$v(t, \omega)=\mathbb{E}\left[\xi\left(W_{T \wedge .}\right) \mid \mathcal{F}_{t}\right](\omega)$
(Path-dependent) Heat Equation
$-\partial_{t} u-\frac{1}{2} \partial_{\omega \omega}^{2} u=0, u(T, \omega)=\xi(\omega)$

A first meeting with Path-dependent PDE (PPDE)

Linear Expectation: non-Markovian
$v(t, \omega)=\mathbb{E}\left[\xi\left(W_{T \wedge .}\right) \mid \mathcal{F}_{t}\right](\omega)$
(Path-dependent) Heat Equation
$-\partial_{t} u-\frac{1}{2} \partial_{\omega \omega}^{2} u=0, u(T, \omega)=\xi(\omega)$

- How to make sense the equation (definition \& existence/uniqueness)? Dupire derviatives, functional Itô calculus \Rightarrow classical solution

A first meeting with Path-dependent PDE (PPDE)

Linear Expectation: non-Markovian
$v(t, \omega)=\mathbb{E}\left[\xi\left(W_{T \wedge .}\right) \mid \mathcal{F}_{t}\right](\omega)$
(Path-dependent) Heat Equation
$-\partial_{t} u-\frac{1}{2} \partial_{\omega \omega}^{2} u=0, u(T, \omega)=\xi(\omega)$

- How to make sense the equation (definition \& existence/uniqueness)? Dupire derviatives, functional Itô calculus \Rightarrow classical solution
- Is there nonlinear extension ?

A first meeting with Path-dependent PDE (PPDE)

Linear Expectation: non-Markovian
$v(t, \omega)=\mathbb{E}\left[\xi\left(W_{T \wedge .}\right) \mid \mathcal{F}_{t}\right](\omega)$
(Path-dependent) Heat Equation
$-\partial_{t} u-\frac{1}{2} \partial_{\omega \omega}^{2} u=0, u(T, \omega)=\xi(\omega)$

- How to make sense the equation (definition \& existence/uniqueness)? Dupire derviatives, functional Itô calculus \Rightarrow classical solution
- Is there nonlinear extension ?

A first meeting with Path-dependent PDE (PPDE)

Linear Expectation: non-Markovian
$v(t, \omega)=\mathbb{E}\left[\xi\left(W_{T \wedge}\right) \mid \mathcal{F}_{t}\right](\omega)$
(Path-dependent) Heat Equation
$-\partial_{t} u-\frac{1}{2} \partial_{\omega \omega}^{2} u=0, u(T, \omega)=\xi(\omega)$

- How to make sense the equation (definition \& existence/uniqueness)? Dupire derviatives, functional Itô calculus \Rightarrow classical solution
- Is there nonlinear extension ?

Introduce viscosity solutions to PPDE's

Table of Contents

(1) Motivation

(2) From PDE to PPDE

(3) Application in the control problems with delays

'The' unique well-defined solution

Consider the first order nonlinear equation with the boundary conditions:

$$
-|D u(x)|=-1, x \in(-1,1), \quad u(-1)=u(1)=1
$$

'The' unique well-defined solution

Consider the first order nonlinear equation with the boundary conditions:

$$
-|D u(x)|=-1, x \in(-1,1), \quad u(-1)=u(1)=1
$$

There is no smooth function, but infinite a.s. smooth functions satisfying this equation.

'The' unique well-defined solution

Consider the first order nonlinear equation with the boundary conditions:

$$
-|D u(x)|=-1, x \in(-1,1), \quad u(-1)=u(1)=1
$$

There is no smooth function, but infinite a.s. smooth functions satisfying this equation. Is there a criteria which can select a unique solution?

'The' unique well-defined solution

Consider the first order nonlinear equation with the boundary conditions:

$$
-|D u(x)|=-1, x \in(-1,1), \quad u(-1)=u(1)=1
$$

There is no smooth function, but infinite a.s. smooth functions satisfying this equation. Is there a criteria which can select a unique solution?

```
Maximum Principle (Elliptic)
max}x\inO u(x)=\mp@subsup{\operatorname{max}}{x\in\partialO}{}u(x),\forallO\subset[-1,1] compact.
```


'The' unique well-defined solution

Consider the first order nonlinear equation with the boundary conditions:

$$
-|D u(x)|=-1, x \in(-1,1), \quad u(-1)=u(1)=1
$$

There is no smooth function, but infinite a.s. smooth functions satisfying this equation. Is there a criteria which can select a unique solution?

Maximum Principle (Elliptic)

$\max _{x \in O} u(x)=\max _{x \in \partial O} u(x), \forall O \subset[-1,1]$ compact.

Only one continuous solution fits the maximum principle: $u(x)=|x|$.

Why 'the' unique solution?

Add a perturbation to the previous equation:

$$
-\left|D u^{\varepsilon}(x)\right|-\varepsilon \Delta u^{\varepsilon}=-1, x \in(-1,1), \quad u^{\varepsilon}(-1)=u^{\varepsilon}(1)=1
$$

Why 'the' unique solution?

Add a perturbation to the previous equation:

$$
-\left|D u^{\varepsilon}(x)\right|-\varepsilon \Delta u^{\varepsilon}=-1, x \in(-1,1), \quad u^{\varepsilon}(-1)=u^{\varepsilon}(1)=1
$$

The unique solution is $u^{\varepsilon}(x)=|x|-\varepsilon e^{-1 / \varepsilon}+\varepsilon e^{-|x| / \varepsilon} \longrightarrow u(x)$.

Why 'the' unique solution?

Add a perturbation to the previous equation:

$$
-\left|D u^{\varepsilon}(x)\right|-\varepsilon \Delta u^{\varepsilon}=-1, x \in(-1,1), \quad u^{\varepsilon}(-1)=u^{\varepsilon}(1)=1
$$

The unique solution is $u^{\varepsilon}(x)=|x|-\varepsilon e^{-1 / \varepsilon}+\varepsilon e^{-|x| / \varepsilon} \longrightarrow u(x)$. The unique solution satisfying the maximum principle is stable under the perturbation!

Why 'the' unique solution?

Add a perturbation to the previous equation:

$$
-\left|D u^{\varepsilon}(x)\right|-\varepsilon \Delta u^{\varepsilon}=-1, x \in(-1,1), \quad u^{\varepsilon}(-1)=u^{\varepsilon}(1)=1
$$

The unique solution is $u^{\varepsilon}(x)=|x|-\varepsilon e^{-1 / \varepsilon}+\varepsilon e^{-|x| / \varepsilon} \longrightarrow u(x)$. The unique solution satisfying the maximum principle is stable under the perturbation! Btw, that's where the name 'viscosity solution' comes from (see e.g. from inviscid Burger's eq. to viscous Burger's eq.).

Why 'the' unique solution?

Add a perturbation to the previous equation:

$$
-\left|D u^{\varepsilon}(x)\right|-\varepsilon \Delta u^{\varepsilon}=-1, x \in(-1,1), \quad u^{\varepsilon}(-1)=u^{\varepsilon}(1)=1
$$

The unique solution is $u^{\varepsilon}(x)=|x|-\varepsilon e^{-1 / \varepsilon}+\varepsilon e^{-|x| / \varepsilon} \longrightarrow u(x)$. The unique solution satisfying the maximum principle is stable under the perturbation! Btw, that's where the name 'viscosity solution' comes from (see e.g. from inviscid Burger's eq. to viscous Burger's eq.).

However, the maximum principle as a criteria is NOT easy to verify a priori. It is more like a property instead of a definition of solutions.

Wait... The simple example can tell more...

Consider the perturbation with negative Laplacian:

$$
-\left|D v^{\varepsilon}(x)\right|+\varepsilon \Delta v^{\varepsilon}=-1, x \in(-1,1), \quad v^{\varepsilon}(-1)=v^{\varepsilon}(1)=1
$$

The solutions are $v^{\varepsilon}(x)=2-u^{\varepsilon}(x)$ converging to $2-u(x)$.

Wait... The simple example can tell more...

Consider the perturbation with negative Laplacian:

$$
\left|D v^{\varepsilon}(x)\right|-\varepsilon \Delta v^{\varepsilon}=1, x \in(-1,1), \quad v^{\varepsilon}(-1)=v^{\varepsilon}(1)=1
$$

The solutions are $v^{\varepsilon}(x)=2-u^{\varepsilon}(x)$ converging to $2-u(x)$.

Wait... The simple example can tell more...

Consider the perturbation with negative Laplacian:

$$
\left|D v^{\varepsilon}(x)\right|-\varepsilon \Delta v^{\varepsilon}=1, x \in(-1,1), \quad v^{\varepsilon}(-1)=v^{\varepsilon}(1)=1
$$

The solutions are $v^{\varepsilon}(x)=2-u^{\varepsilon}(x)$ converging to $2-u(x)$.
We are indeed declaring the difference between the two limit eq.

$$
-|D u|=-1 \quad \text { and } \quad|D v|=1
$$

Wait... The simple example can tell more...

Consider the perturbation with negative Laplacian:

$$
\left|D v^{\varepsilon}(x)\right|-\varepsilon \Delta v^{\varepsilon}=1, x \in(-1,1), \quad v^{\varepsilon}(-1)=v^{\varepsilon}(1)=1
$$

The solutions are $v^{\varepsilon}(x)=2-u^{\varepsilon}(x)$ converging to $2-u(x)$.
We are indeed declaring the difference between the two limit eq.

$$
-|D u|=-1 \quad \text { and } \quad|D v|=1
$$

How can it be true ?!

Wait... The simple example can tell more...

Consider the perturbation with negative Laplacian:

$$
\left|D v^{\varepsilon}(x)\right|-\varepsilon \Delta v^{\varepsilon}=1, x \in(-1,1), \quad v^{\varepsilon}(-1)=v^{\varepsilon}(1)=1
$$

The solutions are $v^{\varepsilon}(x)=2-u^{\varepsilon}(x)$ converging to $2-u(x)$.
We are indeed claiming the difference between the two limit eq.

$$
-|D u|=-1 \quad \text { and } \quad|D v|=1
$$

Wait... The simple example can tell more...

Consider the perturbation with negative Laplacian:

$$
\left|D v^{\varepsilon}(x)\right|-\varepsilon \Delta v^{\varepsilon}=1, x \in(-1,1), \quad v^{\varepsilon}(-1)=v^{\varepsilon}(1)=1
$$

The solutions are $v^{\varepsilon}(x)=2-u^{\varepsilon}(x)$ converging to $2-u(x)$.
We are indeed claiming the difference between the two limit eq.

$$
-|D u|=-1 \quad \text { and } \quad|D v|=1
$$

Split the eq. to one sub-equation and one super-equation

$$
-|D u| \leq, \geq-1 \quad \text { and } \quad|D v| \leq, \geq 1
$$

Wait... The simple example can tell more...

Consider the perturbation with negative Laplacian:

$$
\left|D v^{\varepsilon}(x)\right|-\varepsilon \Delta v^{\varepsilon}=1, x \in(-1,1), \quad v^{\varepsilon}(-1)=v^{\varepsilon}(1)=1
$$

The solutions are $v^{\varepsilon}(x)=2-u^{\varepsilon}(x)$ converging to $2-u(x)$.
We are indeed claiming the difference between the two limit eq.

$$
-|D u|=-1 \quad \text { and } \quad|D v|=1
$$

Split the eq. to one sub-equation and one super-equation

$$
-|D u| \leq, \geq-1 \quad \text { and } \quad|D v| \leq, \geq 1
$$

A good definition of viscosity solution should treat the sub-eq. and the super-eq. separately.

Test functions of viscosity solutions (heat equation)

Consider the heat equation : $-\mathcal{L} u:=-\left(\partial_{t} u+\frac{1}{2} \Delta u\right)=0, u(T, \cdot)=g$.
To define a weak solution, first define the test functions.

Test functions of viscosity solutions (heat equation)

Consider the heat equation : $-\mathcal{L} u:=-\left(\partial_{t} u+\frac{1}{2} \Delta u\right)=0, u(T, \cdot)=g$.
To define a weak solution, first define the test functions. Consider all the smooth functions tangent to u from above at point (t, x), namely,

$$
\underline{A} u(t, x):=\left\{\varphi \in C^{1,2}: 0=(u-\varphi)(t, x)=\max _{s, y}(u-\varphi)(s, y)\right\}
$$

$$
-\left(\partial_{t} \varphi+\frac{1}{2} \Delta \varphi\right)(t, x) \leq 0 \text { for all } \varphi \in \underline{A} u(t, x) .
$$

Test functions of viscosity solutions (heat equation)

Consider the heat equation : $-\mathcal{L} u:=-\left(\partial_{t} u+\frac{1}{2} \Delta u\right)=0, u(T, \cdot)=g$.
To define a weak solution, first define the test functions. Consider all the smooth functions tangent to u from above at point (t, x), namely,

$$
\underline{A} u(t, x):=\left\{\varphi \in C^{1,2}: 0=(u-\varphi)(t, x)=\max _{s, y}(u-\varphi)(s, y)\right\}
$$

Let W be a Brownian motion. As a solution of the heat eq., $\left\{u\left(t+s, x+W_{s}\right)\right\}_{s}$ is naturally a martingale. Therefore, we have $-\varphi(t, x) \geq \mathbb{E}\left[(u-\varphi)\left(t+\tau, x+W_{\tau}\right)-u(t, x)\right]=\mathbb{E}\left[-\varphi\left(t+\tau, x+W_{\tau}\right)\right], \forall \tau$

$$
-\left(\partial_{t} \varphi+\frac{1}{2} \Delta \varphi\right)(t, x) \leq 0 \text { for all } \varphi \in \underline{A} u(t, x) .
$$

Test functions of viscosity solutions (heat equation)

Consider the heat equation : $-\mathcal{L} u:=-\left(\partial_{t} u+\frac{1}{2} \Delta u\right)=0, u(T, \cdot)=g$.
To define a weak solution, first define the test functions. Consider all the smooth functions tangent to u from above at point (t, x), namely,

$$
\underline{A} u(t, x):=\left\{\varphi \in C^{1,2}: 0=(u-\varphi)(t, x)=\max _{s, y}(u-\varphi)(s, y)\right\}
$$

Let W be a Brownian motion. As a solution of the heat eq., $\left\{u\left(t+s, x+W_{s}\right)\right\}_{s}$ is naturally a martingale. Therefore, we have $-\varphi(t, x) \geq \mathbb{E}\left[(u-\varphi)\left(t+\tau, x+W_{\tau}\right)-u(t, x)\right]=\mathbb{E}\left[-\varphi\left(t+\tau, x+W_{\tau}\right)\right], \forall \tau$

Then Itô formula implies that

$$
-\left(\partial_{t} \varphi+\frac{1}{2} \Delta \varphi\right)(t, x) \leq 0 \text { for all } \varphi \in \underline{A} u(t, x) .
$$

Test functions of viscosity solutions (heat equation)

Consider the heat equation : $-\mathcal{L} u:=-\left(\partial_{t} u+\frac{1}{2} \Delta u\right)=0, u(T, \cdot)=g$.
To define a weak solution, first define the test functions. Consider all the smooth functions tangent to u in average from above at point (t, x), namely,
$\underline{\mathcal{A}} u(t, x):=\left\{\varphi \in C^{1,2}:(u-\varphi)(t, x)=\max _{\tau} \mathbb{E}\left[(u-\varphi)\left(t+\tau, x+W_{\tau}\right)\right]\right\}$

Let W be a Brownian motion. As a solution of the heat eq., $\left\{u\left(t+s, x+W_{s}\right)\right\}_{s}$ is naturally a martingale. Therefore, we have $-\varphi(t, x) \geq \mathbb{E}\left[(u-\varphi)\left(t+\tau, x+W_{\tau}\right)-u(t, x)\right]=\mathbb{E}\left[-\varphi\left(t+\tau, x+W_{\tau}\right)\right], \forall \tau$

Then Itô formula implies that

$$
-\left(\partial_{t} \varphi+\frac{1}{2} \Delta \varphi\right)(t, x) \leq 0 \text { for all } \varphi \in \underline{\mathcal{A}} u(t, x) .
$$

Definition of viscosity solutions (heat equation)

Based on the previous observation, we may guess a definition for the viscosity solution of the heat eq.

Definition (Viscosity solution of heat eq.)

Function u is continuous.

- u is a viscosity sub-solution if $-\mathcal{L} \varphi(t, x) \leq 0, \forall t, x, \varphi \in \operatorname{A} u(t, x)$
- v is a viscosity super-solution if $-\mathcal{L} \varphi(t, x) \geq 0, \forall t, x, \varphi \in \bar{A} v(t, x)$
- u is a viscosity solution if u is both visco. sub- and super-solution.

Definition of viscosity solutions (heat equation)

Based on the previous observation, we may guess a definition for the viscosity solution of the heat eq. Let \mathbb{P}_{0} be the Wiener's measure.

Definition (\mathbb{P}_{0}-viscosity solution of heat eq.)

Function u is continuous.

- u is a \mathbb{P}_{0}-visco. sub-solution if $-\mathcal{L} \varphi(t, x) \leq 0, \forall t, x, \varphi \in \mathcal{A} u(t, x)$
- v is a \mathbb{P}_{0}-visco. super-solution if $-\mathcal{L} \varphi(t, x) \geq 0, \forall t, x, \varphi \in \overline{\mathcal{A}} v(t, x)$
- u is a \mathbb{P}_{0}-visco. solution if u is both \mathbb{P}_{0}-visco. sub- and super-solution.
(See [Bayraktar, Sirbu 2012], [Ekren, Keller, Touzi, Zhang 2014])

Definition of viscosity solutions (heat equation)

Based on the previous observation, we may guess a definition for the viscosity solution of the heat eq. Let \mathbb{P}_{0} be the Wiener's measure.

Definition (\mathbb{P}_{0}-viscosity solution of heat eq.)

Function u is continuous.

- u is a \mathbb{P}_{0}-visco. sub-solution if $-\mathcal{L} \varphi(t, x) \leq 0, \forall t, x, \varphi \in \mathcal{A} u(t, x)$
- v is a \mathbb{P}_{0}-visco. super-solution if $-\mathcal{L} \varphi(t, x) \geq 0, \forall t, x, \varphi \in \overline{\mathcal{A}} v(t, x)$
- u is a \mathbb{P}_{0}-visco. solution if u is both \mathbb{P}_{0}-visco. sub- and super-solution.
(See [Bayraktar, Sirbu 2012], [Ekren, Keller, Touzi, Zhang 2014])
Is it a good definition ?
- Is there a unique solution?
- Does it satisfy the maximum principle?

Two puzzles merge into one: Comparison Principle

Comparison principle

Let u, v be $\left(\mathbb{P}_{0}\right.$-) viscosity sub-/super-solution, respectively. Given the fact $u(T, \cdot) \leq v(T, \cdot)$, then we have $u \leq v$ everywhere.

Two puzzles merge into one : Comparison Principle

Comparison principle

Let u, v be (\mathbb{P}_{0}-) viscosity sub-/super-solution, respectively. Given the fact $u(T, \cdot) \leq v(T, \cdot)$, then we have $u \leq v$ everywhere.

- The comparison principle directly leads to the uniqueness of the $\left(\mathbb{P}_{0}\right.$) viscosity solutions to the Dirichlet problem.

Two puzzles merge into one : Comparison Principle

Comparison principle

Let u, v be $\left(\mathbb{P}_{0^{-}}\right)$viscosity sub-/super-solution, respectively. Given the fact $u(T, \cdot) \leq v(T, \cdot)$, then we have $u \leq v$ everywhere.

- The comparison principle directly leads to the uniqueness of the $\left(\mathbb{P}_{0^{-}}\right)$viscosity solutions to the Dirichlet problem.
- Take the constant function $v \equiv \max _{y} u(T, y)$. Then v is a (super)solution to the heat equation and $u(T, \cdot) \leq v$. By the comparison principle, we obtain $u(\cdot, \cdot) \leq v$,

Two puzzles merge into one : Comparison Principle

Comparison principle

Let u, v be $\left(\mathbb{P}_{0^{-}}\right)$viscosity sub-/super-solution, respectively. Given the fact $u(T, \cdot) \leq v(T, \cdot)$, then we have $u \leq v$ everywhere.

- The comparison principle directly leads to the uniqueness of the $\left(\mathbb{P}_{0^{-}}\right)$viscosity solutions to the Dirichlet problem.
- Take the constant function $v \equiv \max _{y} u(T, y)$. Then v is a (super)solution to the heat equation and $u(T, \cdot) \leq v$. By the comparison principle, we obtain $u(\cdot, \cdot) \leq v$, i.e.

Maximum principle (Parabolic)
Let u be $\left(\mathbb{P}_{0^{-}}\right)$viscosity solution. We have $\max _{t \leq T, x} u(t, x)=\max _{x} u(T, x)$.

Proof of comparison for \mathbb{P}_{0}-viscosity solutions

By an optimal stopping argument, we may easily prove:

Theorem

Under some integrability condition, the following properties are equivalent:

- u is a \mathbb{P}_{0}-visco.super-(sub-)solution to the heat equation;
- $u\left(t, W_{t}\right)$ is a super-(sub-)martingale.

Proof of comparison for \mathbb{P}_{0}-viscosity solutions

By an optimal stopping argument, we may easily prove:

Theorem

Under some integrability condition, the following properties are equivalent:

- u is a \mathbb{P}_{0}-visco.super-(sub-)solution to the heat equation;
- $u\left(t, W_{t}\right)$ is a super-(sub-)martingale.
$\underline{\text { Proof of comparison }: ~ L e t ~} u, v$ be \mathbb{P}_{0}-visco-sub/super-solution respectively and assume that $u(T, \cdot) \leq v(T, \cdot)$. Since $u\left(t, W_{t}\right)$ is a submartingale and $v\left(t, W_{t}\right)$ is a supermartingale, we have

$$
u(t, x) \leq \mathbb{E}\left[u\left(T, W_{T}\right) \mid W_{t}=x\right] \leq \mathbb{E}\left[v\left(T, W_{T}\right) \mid W_{t}=x\right] \leq v(t, x)
$$

for all t, x.

Why we prefer the \mathbb{P}_{0}-viscosity solution definition?

By considering the test functions tangent in mean value instead of those tangent point-wisely, we have more test functions, and so fewer visco-subor super-solutions. Intuitively, it helps to prove the comparison principle.

Why we prefer the \mathbb{P}_{0}-viscosity solution definition?

By considering the test functions tangent in mean value instead of those tangent point-wisely, we have more test functions, and so fewer visco-subor super-solutions. Intuitively, it helps to prove the comparison principle.

Technically, by considering the test functions tangent in mean value, we overcome the following difficulty:

PDE

Real space is locally compact

Path dependent PDE

Why we prefer the \mathbb{P}_{0}-viscosity solution definition?

By considering the test functions tangent in mean value instead of those tangent point-wisely, we have more test functions, and so fewer visco-subor super-solutions. Intuitively, it helps to prove the comparison principle.

Technically, by considering the test functions tangent in mean value, we overcome the following difficulty:

PDE

Real space is locally compact

Path dependent PDE

Path space is NOT

Why we prefer the \mathbb{P}_{0}-viscosity solution definition?

By considering the test functions tangent in mean value instead of those tangent point-wisely, we have more test functions, and so fewer visco-subor super-solutions. Intuitively, it helps to prove the comparison principle.

Technically, by considering the test functions tangent in mean value, we overcome the following difficulty:

PDE

Real space is locally compact
$\exists x=\operatorname{argmax}_{y \in O} u(y)$

Path dependent PDE

Path space is NOT

Why we prefer the \mathbb{P}_{0}-viscosity solution definition?

By considering the test functions tangent in mean value instead of those tangent point-wisely, we have more test functions, and so fewer visco-subor super-solutions. Intuitively, it helps to prove the comparison principle.

Technically, by considering the test functions tangent in mean value, we overcome the following difficulty:

PDE

Real space is locally compact
$\exists x=\operatorname{argmax}_{y \in O} u(y)$

Path dependent PDE

Path space is NOT
$\exists \tau^{*}=\operatorname{argmax}_{\tau} \mathbb{E}^{\mathbb{P}_{0}}\left[u_{\tau}\right]$

Non-Markovian and non-linear extensions

The definition of \mathbb{P}_{0}-viscosity solution leads to 'the' unique solution of the heat eq. We are next concerned with

Non-Markovian and non-linear extensions

The definition of \mathbb{P}_{0}-viscosity solution leads to 'the' unique solution of the heat eq. We are next concerned with

- Extension to the path-dependent context (i.e. $-\partial_{t} u-\partial_{\omega \omega}^{2} u=0$) replace the smooth test functions on the real space by the ones on the path space (Dupire derivatives), or just consider the paraboloids $\varphi^{a, b, c}(t, \omega)=a t+b \cdot \omega_{t}+\frac{1}{2} \omega_{t}^{T} c \omega_{t}$ as the test functions

Non-Markovian and non-linear extensions

The definition of \mathbb{P}_{0}-viscosity solution leads to 'the' unique solution of the heat eq. We are next concerned with

- Extension to the path-dependent context (i.e. $-\partial_{t} u-\partial_{\omega \omega}^{2} u=0$) replace the smooth test functions on the real space by the ones on the path space (Dupire derivatives), or just consider the paraboloids $\varphi^{a, b, c}(t, \omega)=a t+b \cdot \omega_{t}+\frac{1}{2} \omega_{t}^{T} c \omega_{t}$ as the test functions
- Extension to the nonlinear equations (i.e. $-\partial_{t} u-G\left(t, \omega, u, \partial_{\omega} u, \partial_{\omega \omega}^{2} u\right)=0$) replace the linear expectation $\mathbb{E}^{\mathbb{P}_{0}}$ by the nonlinear ones $\overline{\mathcal{E}}^{\mathcal{P}}$ or $\underline{\mathcal{E}}^{\mathcal{P}}$, where $\overline{\mathcal{E}}^{\mathcal{P}}:=\sup _{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}}, \underline{\mathcal{E}}^{\mathcal{P}}:=\inf _{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}}$, and \mathcal{P} is a family of continuous semi-martingale measures.
We can prove comparison results under appropriate conditions on G.

Table of Contents

(1) Motivation

(2) From PDE to PPDE

(3) Application in the control problems with delays

How much the delay matters?

Consider the control problems with delays corresponding to the PPDE

$$
-\partial_{t} u^{\delta}-G\left(t, \omega_{t-\delta}, \partial_{\omega \omega}^{2} u^{\delta}\right)=0, \quad u^{\delta}\left(T, \omega_{T}\right)=h\left(\omega_{T}\right)
$$

The \mathcal{P}-viscosity solutions u^{δ} converge to u, the solution of the PDE

$$
-\partial_{t} u-G\left(t, x, D^{2} u\right)=0, \quad u(T, x)=h(x)
$$

How much the delay matters?

Consider the control problems with delays corresponding to the PPDE

$$
-\partial_{t} u^{\delta}-G\left(t, \omega_{t-\delta}, \partial_{\omega \omega}^{2} u^{\delta}\right)=0, \quad u^{\delta}\left(T, \omega_{T}\right)=h\left(\omega_{T}\right)
$$

The \mathcal{P}-viscosity solutions u^{δ} converge to u, the solution of the PDE

$$
-\partial_{t} u-G\left(t, x, D^{2} u\right)=0, \quad u(T, x)=h(x)
$$

We are concerned with the convergence rate: $\lim _{\delta \rightarrow 0} \frac{U^{\delta}-u}{\delta}$?

How much the delay matters?

Consider the control problems with delays corresponding to the PPDE

$$
-\partial_{t} u^{\delta}-G\left(t, \omega_{t-\delta}, \partial_{\omega \omega}^{2} u^{\delta}\right)=0, \quad u^{\delta}\left(T, \omega_{T}\right)=h\left(\omega_{T}\right)
$$

The \mathcal{P}-viscosity solutions u^{δ} converge to u, the solution of the PDE

$$
-\partial_{t} u-G\left(t, x, D^{2} u\right)=0, \quad u(T, x)=h(x)
$$

We are concerned with the convergence rate: $\lim _{\delta \rightarrow 0} \frac{\mu^{\delta}-u}{\delta}$?
Define $H_{t}^{\delta}:=\frac{1}{\delta} \mathbb{E}\left[\int_{t}^{\top}\left(G\left(t, X_{t-\delta}, u\left(t, X_{t}\right)\right)-G\left(t, X_{t}, u\left(t, X_{t}\right)\right)\right) \mid \mathcal{F}_{t}\right]$, where $d X_{t}=\left(2 G_{\gamma}\left(t, X_{t}, u\left(t, X_{t}\right)\right)\right)^{\frac{1}{2}} d W_{t}$

How much the delay matters?

Consider the control problems with delays corresponding to the PPDE

$$
-\partial_{t} u^{\delta}-G\left(t, \omega_{t-\delta}, \partial_{\omega \omega}^{2} u^{\delta}\right)=0, \quad u^{\delta}\left(T, \omega_{T}\right)=h\left(\omega_{T}\right)
$$

The \mathcal{P}-viscosity solutions u^{δ} converge to u, the solution of the PDE

$$
-\partial_{t} u-G\left(t, x, D^{2} u\right)=0, \quad u(T, x)=h(x)
$$

We are concerned with the convergence rate: $\lim _{\delta \rightarrow 0} \frac{\mu^{\delta}-u}{\delta}$?
Define $H_{t}^{\delta}:=\frac{1}{\delta} \mathbb{E}\left[\int_{t}^{T}\left(G\left(t, X_{t-\delta}, u\left(t, X_{t}\right)\right)-G\left(t, X_{t}, u\left(t, X_{t}\right)\right)\right) \mid \mathcal{F}_{t}\right]$, where $d X_{t}=\left(2 G_{\gamma}\left(t, X_{t}, u\left(t, X_{t}\right)\right)\right)^{\frac{1}{2}} d W_{t}$

Under appropriate conditions (regularity of G, u), we may prove that $\lim _{\delta \rightarrow 0} \frac{\mu^{\delta}-u}{\delta}=\lim _{\delta \rightarrow 0} H^{\delta}$ and the r.h.s. can be calculated explicitly.

Intuitive proof

Define $v^{\delta}:=\frac{u^{\delta}-u}{\delta}-H^{\delta}$ and $v:=\lim _{\delta \rightarrow 0} v^{\delta}$.

Intuitive proof

Define $v^{\delta}:=\frac{u^{\delta}-u}{\delta}-H^{\delta}$ and $v:=\lim _{\delta \rightarrow 0} v^{\delta}$.

$$
\begin{aligned}
\partial_{t} v^{\delta}= & \frac{1}{\delta}\left(\partial_{t} u^{\delta}-\partial_{t} u\right)-\partial_{t} H^{\delta} \\
= & \frac{1}{\delta}\left(G\left(t, \omega_{t}, D^{2} u\right)-G\left(t, \omega_{t-\delta}, \partial_{\omega \omega}^{2} u^{\delta}\right)\right)-\partial_{t} H^{\delta} \\
= & -\frac{1}{\delta}\left(G\left(t, \omega_{t-\delta}, D^{2} u\right)-G\left(t, \omega_{t-\delta}, \partial_{\omega \omega}^{2} u^{\delta}\right)\right) \\
& \quad+\frac{1}{\delta}\left(G\left(t, \omega_{t}, D^{2} u\right)-G\left(t, \omega_{t-\delta}, D^{2} u\right)\right)-\partial_{t} H^{\delta} \\
& \quad-G_{\gamma}\left(t, \omega_{t}, D^{2} u\right) \partial_{\omega \omega}^{2} v^{\delta}-G_{\gamma}\left(t, \omega_{t}, D^{2} u\right) \partial_{\omega \omega}^{2} H^{\delta}+o(1) \\
& \quad+\frac{1}{\delta}\left(G\left(t, \omega_{t}, D^{2} u\right)-G\left(t, \omega_{t-\delta}, D^{2} u\right)\right)-\partial_{t} H^{\delta} \\
= & -G_{\gamma}\left(t, \omega_{t}, D^{2} u\right) \partial_{\omega \omega}^{2} v^{\delta}+o(1)
\end{aligned}
$$

Intuitive proof

Define $v^{\delta}:=\frac{u^{\delta}-u}{\delta}-H^{\delta}$ and $v:=\lim _{\delta \rightarrow 0} v^{\delta}$.

$$
\begin{aligned}
\partial_{t} v^{\delta}= & \frac{1}{\delta}\left(\partial_{t} u^{\delta}-\partial_{t} u\right)-\partial_{t} H^{\delta} \\
= & \frac{1}{\delta}\left(G\left(t, \omega_{t}, D^{2} u\right)-G\left(t, \omega_{t-\delta}, \partial_{\omega \omega}^{2} u^{\delta}\right)\right)-\partial_{t} H^{\delta} \\
= & -\frac{1}{\delta}\left(G\left(t, \omega_{t-\delta}, D^{2} u\right)-G\left(t, \omega_{t-\delta}, \partial_{\omega \omega}^{2} u^{\delta}\right)\right) \\
& \quad+\frac{1}{\delta}\left(G\left(t, \omega_{t}, D^{2} u\right)-G\left(t, \omega_{t-\delta}, D^{2} u\right)\right)-\partial_{t} H^{\delta} \\
& \quad-G_{\gamma}\left(t, \omega_{t}, D^{2} u\right) \partial_{\omega \omega}^{2} v^{\delta}-G_{\gamma}\left(t, \omega_{t}, D^{2} u\right) \partial_{\omega \omega}^{2} H^{\delta}+o(1) \\
& \quad+\frac{1}{\delta}\left(G\left(t, \omega_{t}, D^{2} u\right)-G\left(t, \omega_{t-\delta}, D^{2} u\right)\right)-\partial_{t} H^{\delta} \\
= & -G_{\gamma}\left(t, \omega_{t}, D^{2} u\right) \partial_{\omega \omega}^{2} v^{\delta}+o(1)
\end{aligned}
$$

By stability argument, we may prove $\partial_{t} v+G_{\gamma}\left(t, \omega_{t}, D^{2} u\right) \partial_{\omega \omega}^{2} v=0$.
Taking into account that $v_{T}=0$, we obtain $v \equiv 0$.

To be continue

Since 2012,

- Ekren, Keller, Touzi, Zhang introduced visco-sol of PPDE

To be continue

Since 2012,

- Ekren, Keller, Touzi, Zhang introduced visco-sol of PPDE
- Comparison for fully nonlinear PPDE (under technical conditions, e.g. non-degenerate), Ekren, Touzi, Zhang

To be continue

Since 2012,

- Ekren, Keller, Touzi, Zhang introduced visco-sol of PPDE
- Comparison for fully nonlinear PPDE (under technical conditions, e.g. non-degenerate), Ekren, Touzi, Zhang
- Comparison for semilinear PPDE, R., Touzi, Zhang

To be continue

Since 2012,

- Ekren, Keller, Touzi, Zhang introduced visco-sol of PPDE
- Comparison for fully nonlinear PPDE (under technical conditions, e.g. non-degenerate), Ekren, Touzi, Zhang
- Comparison for semilinear PPDE, R., Touzi, Zhang
- Perron's method for the existence of visco-sol to semilinear PPDE, R.

To be continue

Since 2012,

- Ekren, Keller, Touzi, Zhang introduced visco-sol of PPDE
- Comparison for fully nonlinear PPDE (under technical conditions, e.g. non-degenerate), Ekren, Touzi, Zhang
- Comparison for semilinear PPDE, R., Touzi, Zhang
- Perron's method for the existence of visco-sol to semilinear PPDE, R.
- Monotone scheme for PPDE, Zhang, Zhuo / R., Tan

To be continue

Since 2012,

- Ekren, Keller, Touzi, Zhang introduced visco-sol of PPDE
- Comparison for fully nonlinear PPDE (under technical conditions, e.g. non-degenerate), Ekren, Touzi, Zhang
- Comparison for semilinear PPDE, R., Touzi, Zhang
- Perron's method for the existence of visco-sol to semilinear PPDE, R.
- Monotone scheme for PPDE, Zhang, Zhuo / R., Tan
- Some extensions: Elliptic PPDE, R.; Variational inequality, Ekren; Integro-differential equation, Keller; etc.

To be continue

Since 2012,

- Ekren, Keller, Touzi, Zhang introduced visco-sol of PPDE
- Comparison for fully nonlinear PPDE (under technical conditions, e.g. non-degenerate), Ekren, Touzi, Zhang
- Comparison for semilinear PPDE, R., Touzi, Zhang
- Perron's method for the existence of visco-sol to semilinear PPDE, R.
- Monotone scheme for PPDE, Zhang, Zhuo / R., Tan
- Some extensions: Elliptic PPDE, R.; Variational inequality, Ekren; Integro-differential equation, Keller; etc.
- Application in non-Markov large deviation, Ma, R., Touzi, Zhang; Application in stochastic differential games, Pham, Zhang

To be continue

Since 2012,

- Ekren, Keller, Touzi, Zhang introduced visco-sol of PPDE
- Comparison for fully nonlinear PPDE (under technical conditions, e.g. non-degenerate), Ekren, Touzi, Zhang
- Comparison for semilinear PPDE, R., Touzi, Zhang
- Perron's method for the existence of visco-sol to semilinear PPDE, R.
- Monotone scheme for PPDE, Zhang, Zhuo / R., Tan
- Some extensions: Elliptic PPDE, R.; Variational inequality, Ekren; Integro-differential equation, Keller; etc.
- Application in non-Markov large deviation, Ma, R., Touzi, Zhang; Application in stochastic differential games, Pham, Zhang
- Comparison for fully nonlinear PPDE $\left(d_{p}\right), R$., Touzi, Zhang

To be continue

Since 2012,

- Ekren, Keller, Touzi, Zhang introduced visco-sol of PPDE
- Comparison for fully nonlinear PPDE (under technical conditions, e.g. non-degenerate), Ekren, Touzi, Zhang
- Comparison for semilinear PPDE, R., Touzi, Zhang
- Perron's method for the existence of visco-sol to semilinear PPDE, R.
- Monotone scheme for PPDE, Zhang, Zhuo / R., Tan
- Some extensions: Elliptic PPDE, R.; Variational inequality, Ekren; Integro-differential equation, Keller; etc.
- Application in non-Markov large deviation, Ma, R., Touzi, Zhang; Application in stochastic differential games, Pham, Zhang
- Comparison for fully nonlinear PPDE $\left(d_{p}\right), R$., Touzi, Zhang
- Convergence rate from a delayed control problem to a non-delay control problem, R., Touzi, Zhang

To be continue

Since 2012,

- Ekren, Keller, Touzi, Zhang introduced visco-sol of PPDE
- Comparison for fully nonlinear PPDE (under technical conditions, e.g. non-degenerate), Ekren, Touzi, Zhang
- Comparison for semilinear PPDE, R., Touzi, Zhang
- Perron's method for the existence of visco-sol to semilinear PPDE, R.
- Monotone scheme for PPDE, Zhang, Zhuo / R., Tan
- Some extensions: Elliptic PPDE, R.; Variational inequality, Ekren; Integro-differential equation, Keller; etc.
- Application in non-Markov large deviation, Ma, R., Touzi, Zhang; Application in stochastic differential games, Pham, Zhang
- Comparison for fully nonlinear PPDE $\left(d_{p}\right), R$., Touzi, Zhang
- Convergence rate from a delayed control problem to a non-delay control problem, R., Touzi, Zhang

Thank you for your attention!

