Solving Quadratic BSDEs

Hélène HIBON

29/06/16

(1) Introduction

(2) The convex frame

- Motivation
- The Legendre-Fenchel transformation
- The result
(3) The multidimensional frame
- Local \rightarrow Global solution
- Stability results
(1) Introduction
(2) The convex frame
- Motivation
- The Legendre-Fenchel transformation
- The result
(3) The multidimensional frame
- Local \rightarrow Global solution
- Stability results
(1) Introduction
(2) The convex frame
- Motivation
- The Legendre-Fenchel transformation
- The result
(3) The multidimensional frame
- Local \rightarrow Global solution
- Stability results

What is a solution to a BSDE ?

For $\operatorname{BSDE}(\xi, g)$: a pair (Y, Z) of predictable processes such that a.s $t \mapsto Y_{t}$ is continuous, $t \mapsto Z_{t}$ belongs to $L^{2}(0, T)$, $t \mapsto g\left(t, Y_{t}, Z_{t}\right)$ belongs to $L^{1}(0, T)$ and

$$
Y_{t}=\xi+\int_{t}^{T} g\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W s
$$

where $\left\{W_{t}:=\left(W_{t}^{1}, \ldots, W_{t}^{d}\right)^{*}, 0 \leq t \leq T\right\}$ is a d-dimensional standard Brownian motion defined on some probability space (Ω, \mathscr{F}, P)

Notations and requirements

n denotes the dimension for Y

$\diamond\left\{\mathscr{F}_{t}, 0 \leq t \leq T\right\}$: augmented natural filtration of the Brownian motion W
$\diamond \mathscr{S}^{\infty}\left(\mathbb{R}^{n}\right)$: set of \mathbb{R}^{n}-valued \mathscr{F}_{t}-adapted essentially bounded continuous processes. Banach space when provided with the essential sup norm $\|.\|_{\infty}$ $\diamond \mathscr{M}^{2}\left(\mathbb{R}^{n \times d}\right)$: set of predictable $\mathbb{R}^{n \times d}$-valued processes $\left\{Z_{t}\right\}_{t \in[0, T]}$ such that $\|Z\|_{\mathscr{M}^{2}}:=\mathbb{E}\left[\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right]^{1 / 2}<\infty$

- Comparison theorem and Kobylanski's monotone convergence theorem $\diamond \mathscr{E}(M)$: the stochastic exponential of a one-dimensional local martingale M $\diamond \beta \cdot M$: the stochastic integral of an adapted process β with respect to a local continuous martingale M

Notations and requirements

n denotes the dimension for Y
$\diamond\left\{\mathscr{F}_{t}, 0 \leq t \leq T\right\}$: augmented natural filtration of the Brownian motion W $\diamond \mathscr{S}^{\infty}\left(\mathbb{R}^{n}\right)$: set of \mathbb{R}^{n}-valued \mathscr{F}_{t}-adapted essentially bounded continuous processes. Banach space when provided with the essential sup norm $\|\cdot\|_{\infty}$ $\diamond \mathscr{M}^{2}\left(\mathbb{R}^{n \times d}\right)$: set of predictable $\mathbb{R}^{n \times d}$-valued processes $\left\{Z_{t}\right\}_{t \in[0, T]}$ such that $\|Z\|_{\mathscr{M}^{2}}:=\mathbb{E}\left[\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right]^{1 / 2}<\infty$

- Comparison theorem and Kobylanski's monotone convergence theorem $\diamond \mathscr{E}(M)$: the stochastic exponential of a one-dimensional local martingale M $\diamond \beta \cdot M$: the stochastic integral of an adapted process β with respect to a local continuous martingale M

Notations and requirements

n denotes the dimension for Y
$\diamond\left\{\mathscr{F}_{t}, 0 \leq t \leq T\right\}$: augmented natural filtration of the Brownian motion W $\diamond \mathscr{S}^{\infty}\left(\mathbb{R}^{n}\right)$: set of \mathbb{R}^{n}-valued \mathscr{F}_{t}-adapted essentially bounded continuous processes. Banach space when provided with the essential sup norm $\|\cdot\|_{\infty}$
$\diamond \mathscr{M}^{2}\left(\mathbb{R}^{n \times d}\right)$: set of predictable $\mathbb{R}^{n \times d}$-valued processes $\left\{Z_{t}\right\}_{t \in[0, T]}$ such that
$\|Z\|_{\mathscr{K}^{2}}:=\mathbb{E}\left[\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right]^{1 / 2}<\infty$

- Comparison theorem and Kobylanski's monotone convergence theorem
$\diamond \mathscr{E}(M)$: the stochastic exponential of a one-dimensional local martingale M
$\diamond \beta \cdot M$: the stochastic integral of an adapted process β with respect to a local continuous martingale M

Notations and requirements

n denotes the dimension for Y
$\diamond\left\{\mathscr{F}_{t}, 0 \leq t \leq T\right\}$: augmented natural filtration of the Brownian motion W
$\diamond \mathscr{S}^{\infty}\left(\mathbb{R}^{n}\right)$: set of \mathbb{R}^{n}-valued \mathscr{F}_{t}-adapted essentially bounded continuous processes. Banach space when provided with the essential sup norm $\|\cdot\|_{\infty}$
$\diamond \mathscr{M}^{2}\left(\mathbb{R}^{n \times d}\right)$: set of predictable $\mathbb{R}^{n \times d}$-valued processes $\left\{Z_{t}\right\}_{t \in[0, T]}$ such that
$\|Z\|_{\mathscr{M}^{2}}:=\mathbb{E}\left[\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right]^{1 / 2}<\infty$

- Comparison theorem and Kobylanski's monotone convergence theorem
$\diamond \mathscr{E}(M)$: the stochastic exponential of a one-dimensional local martingale M $\diamond \beta \cdot M$: the stochastic integral of an adapted process β with respect to a local continuous martingale M
- Girsanov's theorem and BMO martingales

Definition : $M=\left(M_{t}, \mathscr{F}_{t}\right)$ uniformly integrable martingale with $M_{0}=0$ is $B M O_{2}$ if there exists $c>0$ so that $\mathbb{E}\left[<M>_{\tau}^{\infty} \mid \mathscr{F}_{\tau}\right] \leq c$ for all bounded s.t τ. $\|M\|_{B_{M O_{2}}}^{2}:=$ the smallest such constant.

Lemma (Kazamaki) :

For $K>0$, there are constants $c_{1}(K)>0$ and $c_{2}(K)>0$ such that for any one-dimensional BMO_{2} martingale N such that $\|N\|_{B M O_{2}(P)} \leq K$ and any BMO_{2} martingale M ,

$$
c_{1}\|M\|_{B M O_{2}(P)} \leq\|\tilde{M}\|_{B M O_{2}(\tilde{P})} \leq c_{2}\|M\|_{B M O_{2}(P)}
$$

where $\tilde{M}:=M-\langle M, N\rangle$ and $d \tilde{P}:=\mathscr{E}(N)_{0}^{\infty} d P$.

- Girsanov's theorem and BMO martingales

Definition : $M=\left(M_{t}, \mathscr{F}_{t}\right)$ uniformly integrable martingale with $M_{0}=0$ is $B M O_{2}$ if there exists $c>0$ so that $\mathbb{E}\left[<M>_{\tau}^{\infty} \mid \mathscr{F}_{\tau}\right] \leq c$ for all bounded s.t τ. $\|M\|_{B M O_{2}}^{2}:=$ the smallest such constant.

Lemma (Kazamaki) :

For $K>0$, there are constants $c_{1}(K)>0$ and $c_{2}(K)>0$ such that for any one-dimensional $B M O_{2}$ martingale N such that $\|N\|_{B M O_{2}(P)} \leq K$ and any BMO_{2} martingale M ,

$$
c_{1}\|M\|_{B M O_{2}(P)} \leq\|\tilde{M}\|_{B M O_{2}(\tilde{P})} \leq c_{2}\|M\|_{B M O_{2}(P)}
$$

where $\tilde{M}:=M-\langle M, N\rangle$ and $d \tilde{P}:=\mathscr{E}(N)_{0}^{\infty} d P$.

- Existence and uniqueness of solution to BSDE with quadratic generator

Theorem (Briand, Hu - 2006) :

If $|g(t, y, z)| \leq \alpha_{t}+\beta|y|+\frac{\gamma}{2}|z|^{2}$ with $\left(\alpha_{t}\right)_{t \in[0, T]}$ progressively measurable and $\exists \lambda>\gamma e^{\beta T}$ s.t $\mathbb{E}\left[\exp \left(\lambda|\xi|+\lambda \int_{0}^{T} \alpha_{t} d t\right)\right]<\infty$ then their exists a solution with $Z \in \mathscr{M}^{2}$ and $-\frac{1}{\gamma} \ln \mathbb{E}\left[\phi_{t}(-\xi) \mid \mathcal{F}_{t}\right] \leq Y_{t} \leq \frac{1}{\gamma} \ln \mathbb{E}\left[\phi_{t}(\xi) \mid \mathcal{F}_{t}\right]$
where $\phi .(z)$ solves $\left\{\begin{array}{l}\left.d \phi_{t}=-H\left(t, \phi_{t}\right) d t \quad \begin{array}{rl}\text { with } H(t, p):=\alpha_{t} \gamma \mathbf{1}_{p \in]-\infty, 1[} \\ \phi_{T}=e^{\gamma z} & +p\left(\alpha_{t} \gamma+\beta \ln (p)\right) \mathbf{1}_{p \geq 1}\end{array}\right]\end{array}\right.$

Theorem (Delbaen, Hu, Richou - 2011) :

Suppose g convex with respect to z, K-Lip with respect to y and

$$
g(t, y, z) \leq \bar{\alpha}_{t}+\bar{\beta}|y|+\frac{\bar{\gamma}}{2}|z|^{2}
$$

1) Suppose $g(t, y, z) \geq-\underline{\alpha}_{t}-r(|y|+|z|)$. If exponential moment of order ε for $\xi^{-}+\int_{0}^{T} \underline{\alpha}_{t} d t$ then a solution and a cste C s.t $\mathbb{E}\left[e^{\frac{\varepsilon}{C} e^{-C T}\left(Y^{-}\right)^{*}}\right]<\infty$ If exponential moment of order $p e^{\bar{\beta} T}, p>\bar{\gamma}$ for $\xi^{+}+\int_{0}^{T} \bar{\alpha}_{t} d t$ then a solution s.t $\mathbb{E}\left[e^{p A^{*}}\right]<\infty$ with $A_{t}:=Y_{t}^{+}+\int_{0}^{T} \bar{\alpha}_{t} d t$
2) If there exists a solution verifying $\exists p>\bar{\gamma}, \exists \varepsilon>0$ s.t $\mathbb{E}\left[e^{p A^{*}}+e^{\varepsilon\left(Y^{-}\right)^{*}}\right]<\infty$ then it is unique (among such solutions).

- Existence and uniqueness of solution to BSDE with quadratic generator

Theorem (Briand, Hu - 2006) :

If $|g(t, y, z)| \leq \alpha_{t}+\beta|y|+\frac{\gamma}{2}|z|^{2}$ with $\left(\alpha_{t}\right)_{t \in[0, T]}$ progressively measurable and $\exists \lambda>\gamma e^{\beta T}$ s.t $\mathbb{E}\left[\exp \left(\lambda|\xi|+\lambda \int_{0}^{T} \alpha_{t} d t\right)\right]<\infty$ then their exists a solution with $Z \in \mathscr{M}^{2}$ and $-\frac{1}{\gamma} \ln \mathbb{E}\left[\phi_{t}(-\xi) \mid \mathcal{F}_{t}\right] \leq Y_{t} \leq \frac{1}{\gamma} \ln \mathbb{E}\left[\phi_{t}(\xi) \mid \mathcal{F}_{t}\right]$

Theorem (Delbaen, Hu, Richou - 2011) :

Suppose g convex with respect to z, K-Lip with respect to y and

$$
g(t, y, z) \leq \bar{\alpha}_{t}+\bar{\beta}|y|+\frac{\bar{\gamma}}{2}|z|^{2} .
$$

1) Suppose $g(t, y, z) \geq-\underline{\alpha}_{t}-r(|y|+|z|)$. If exponential moment of order ε for $\xi^{-}+\int_{0}^{T} \underline{\alpha}_{t} d t$ then a solution and a cste C s.t $\mathbb{E}\left[e^{\frac{\varepsilon}{C} e^{-C T}\left(Y^{-}\right)^{*}}\right]<\infty$ If exponential moment of order $p e^{\bar{\beta} T}, p>\bar{\gamma}$ for $\xi^{+}+\int_{0}^{T} \bar{\alpha}_{t} d t$ then a solution s.t $\mathbb{E}\left[e^{p A^{*}}\right]<\infty$ with $A_{t}:=Y_{t}^{+}+\int_{0}^{T} \bar{\alpha}_{t} d t$
2) If there exists a solution verifying $\exists p>\bar{\gamma}, \exists \varepsilon>0$ s.t $\mathbb{E}\left[e^{p A^{*}}+e^{\varepsilon\left(Y^{-}\right)^{*}}\right]<\infty$ then it is unique (among such solutions).

- Existence and uniqueness of solution to BSDE with quadratic generator

Theorem (Briand, Hu - 2006)

If $|g(t, y, z)| \leq \alpha_{t}+\beta|y|+\frac{\gamma}{2}|z|^{2}$ with $\left(\alpha_{t}\right)_{t \in[0, T]}$ progressively measurable and $\exists \lambda>\gamma e^{\beta T}$ s.t $\mathbb{E}\left[\exp \left(\lambda|\xi|+\lambda \int_{0}^{T} \alpha_{t} d t\right)\right]<\infty$ then their exists a solution with $Z \in \mathscr{M}^{2}$ and $-\frac{1}{\gamma} \ln \mathbb{E}\left[\phi_{t}(-\xi) \mid \mathcal{F}_{t}\right] \leq Y_{t} \leq \frac{1}{\gamma} \ln \mathbb{E}\left[\phi_{t}(\xi) \mid \mathcal{F}_{t}\right]$ where $\phi .(z)$ solves $\left\{\begin{array}{l}\left.d \phi_{t}=-H\left(t, \phi_{t}\right) d t \quad \begin{array}{rl}\text { with } H(t, p):=\alpha_{t} \gamma \mathbf{1}_{p \in]-\infty, 1[} \\ \phi_{T}=e^{\gamma z} & +p\left(\alpha_{t} \gamma+\beta \ln (p)\right) \mathbf{1}_{p \geq 1}\end{array}\right]\end{array}\right.$

Theorem (Delbaen, Hu, Richou - 2011) :

Suppose g convex with respect to $z, K-$ Lip with respect to y and

$$
g(t, y, z) \leq \bar{\alpha}_{t}+\bar{\beta}|y|+\frac{\bar{\gamma}}{2}|z|^{2}
$$

1) Suppose $g(t, y, z) \geq-\underline{\alpha}_{t}-r(|y|+|z|)$. If exponential moment of order ε for $\xi^{-}+\int_{0}^{T} \underline{\alpha}_{t} d t$ then a solution and a cste C s.t $\mathbb{E}\left[e^{\frac{\varepsilon}{C} e^{-C T}\left(Y^{-}\right)^{*}}\right]<\infty$ If exponential moment of order $p e^{\bar{\beta} T}, p>\bar{\gamma}$ for $\xi^{+}+\int_{0}^{T} \bar{\alpha}_{t} d t$ then a solution s.t $\mathbb{E}\left[e^{p A^{*}}\right]<\infty$ with $A_{t}:=Y_{t}^{+}+\int_{0}^{T} \bar{\alpha}_{t} d t$
2) If there exists a solution verifying $\exists p>\bar{\gamma}, \exists \varepsilon>0$ s.t $\mathbb{E}\left[e^{p A^{*}}+e^{\varepsilon\left(Y^{-}\right)^{*}}\right]<\infty$ then it is unique (among such solutions).

Motivation

Zero-sum stochastic differential games (Hamadene, Lepeltier - 1995) :
Equation $\left\{\begin{array}{l}d Y_{t}=g\left(Z_{t}\right) d t-Z_{t} \cdot d W_{t} \\ Y_{T}=\xi \\ g(z)=g_{1}(z)-g_{2}(z)=\sup _{q_{1} \in U q_{2} \in V}\left\{z .\left(q_{1}-q_{2}\right)-\left(f_{1}\left(q_{1}\right)-f_{2}\left(q_{2}\right)\right)\right\}\end{array}\right.$
written as $\left\{\begin{array}{l}-d Y_{t}=\tilde{g}\left(\tilde{Z}_{t}\right) d t-\tilde{Z}_{t} \cdot d W_{t} \\ Y_{T}=\xi \\ \tilde{g}(z)=\inf _{q_{1} \in U_{q_{2} \in V}} \sup _{2}\left\{z .\left(q_{1}-q_{2}\right)+\left(f_{1}\left(q_{1}\right)-f_{2}\left(q_{2}\right)\right)\right\}\end{array}\right.$
admits a unique solution : the payoff with optimal strategies

$$
\begin{gathered}
Y_{t}=J_{t}\left(\tilde{u}^{*}, \tilde{v}^{*}\right)=\inf _{u \in \mathcal{U}_{v \in \mathcal{V}}} J_{t}(u, v) \text { where } \\
J_{t}(u, v)=\mathbb{E}^{u, v}\left[\xi+\int_{t}^{T}\left(f_{1}\left(u_{s}\right)-f_{2}\left(v_{s}\right)\right) d s \mid \mathscr{F}_{t}\right], \frac{d \mathbb{P}^{u, v}}{d \mathbb{P}}=\mathcal{E}\left(\int(u-v) \cdot d W\right)
\end{gathered}
$$

The Legendre-Fenchel transformation

Proposition :

The Legendre-Fenchel transformation of g defined on $[0, T] \times \mathbb{R} \times \mathbb{R}^{d}$ by

$$
f(t, y, q):=\sup \left\{z . q-g(t, y, z) \mid z \in \mathbb{R}^{d}\right\}
$$

is convex $/ q, K-\operatorname{Lip} / y$ (when finite) and $f(t, y, q) \geq-\bar{\alpha}_{t}-\bar{\beta}|y|+\frac{1}{2 \bar{\gamma}}|q|^{2}$.

Geometrical interpretation :

Sub-differential of $g(t, y,$.$) at point z_{0}$ (denoted $\left.\partial g(t, y,).\left(z_{0}\right)\right)$
$:=$ set of the slopes of all affine functions $\leq g(t, y,$.$) but equal in z_{0}$.

$$
(q . z-c \leq g(t, y, z) \forall z) \Leftrightarrow(c \geq q . z-g(t, y, z) \forall z) \Leftrightarrow c \geq f(t, y, q)
$$

If sup reached in z_{0}, then $q \in \partial g(t, y,).\left(z_{0}\right)$.

The result

$$
d Y_{t}=\left[g_{1}\left(Y_{t}, Z_{t}\right)-g_{2}\left(Y_{t}, Z_{t}\right)\right] d t-Z_{t} \cdot d W_{t} \quad, \quad Y_{T}=\xi
$$

Assumptions : g_{i} convex $/ z, K-\operatorname{Lip} / y, 0 \leq g_{i}(y, z) \leq C+\beta|y|+\frac{1}{2}|z|^{2}$ exponential moment of order $>e^{(\beta+K) T}$ for $|\xi|$
Then their exists (Y, Z) solution with $Z \in \mathscr{M}^{2}$

Theorem :

If $g_{2} L$-Lip $/ z, f_{2}(0,$.$) bounded on its effective domain and \exists p>1$ and $\varepsilon>0$
s.t $\mathbb{E}\left[e^{p\left(Y^{-}\right)^{*}}+e^{\varepsilon\left(Y^{+}\right)^{*}}\right]<\infty$ then uniqueness and characterization :

$$
Y_{t}=\sup _{q \in \mathcal{E}^{[0, T]}} Y_{t}^{q}\left\{\begin{array}{l}
\mathcal{E}:=\left\{q \in \mathbb{R}^{d}| | q \mid \leq L, f_{2}(0, q)<\infty\right\} \\
d Y_{t}^{q}=\left[g_{1}\left(Y_{t}^{q}, Z_{t}^{q}\right)-Z_{t}^{q} \cdot q_{t}+f_{2}\left(Y_{t}^{q}, q_{t}\right)\right] d t-Z_{t}^{q} \cdot d W_{t}
\end{array}\right.
$$

the supremum is reached in any element of the sub-differential of $g_{2}(Y,$.$) at Z$.

Framework

$$
\begin{cases}X_{s}^{t, x}=x & \forall s \leq t \\ \left(X_{s}^{t, x}\right)_{s \geq t} & \text { unique solution of SDE }\end{cases}
$$

$$
X_{s}^{t, x}=x+\int_{t}^{s} b\left(u, X_{u}^{t, x}\right) d u+\int_{t}^{s} \sigma(u) d W_{u} \quad \forall s \geq t
$$

where $b:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $\sigma:[0, T] \rightarrow \mathbb{R}^{d \times d}$ continuous, $|b(., 0)| \leq K$ and $b K$-Lipschitz w.r.t space variable.

$$
Y_{s}^{t, x}=\varphi\left(X_{T}^{t, x}\right)+\int_{s}^{T} g\left(Y_{u}^{t, x}, Z_{u}^{t, x}\right) d u-\int_{s}^{T} Z_{u}^{t, x} d W_{u} \quad \forall s \in[0, T] \quad\left(*_{1}\right)
$$

Assumptions :

- φ is bounded
- $g^{i}(y, z)=f^{i}\left(z^{i}\right)+h^{i}(y, z)$
- $\left|f^{i}\left(z^{i}\right)\right| \leq C+\frac{\gamma}{2}\left|z^{i}\right|^{2}, \quad\left|f^{i}\left(z^{i}\right)-f^{i}\left(\tilde{z}^{i}\right)\right| \leq C\left(1+\left|z^{i}\right|+\left|\tilde{z}^{i}\right|\right)\left|z^{i}-\tilde{z}^{i}\right|$
- $|h(y, z)| \leq C(1+|y|), \quad|h(y, z)-h(\tilde{y}, \tilde{z})| \leq C(|y-\tilde{y}|+|z-\tilde{z}|)$

Local \rightarrow Global solution

Proposition (Hu, Tang - 2016) :

There exists $\varepsilon>0$ and a bounded set $\mathscr{B}_{\varepsilon}$ of the product space $\mathscr{S}^{\infty} \times B M O_{2}$ restricted on the time interval $[T-\varepsilon, T]$ such that $\operatorname{BSDE}\left(*_{1}\right)$ has a unique local solution $\left(Y^{t, x}, Z^{t, x}\right)$ in the time interval $[T-\varepsilon, T]$ with $(Y, Z) \in \mathscr{B}_{\varepsilon}$.
$\Pi:(U, V \cdot W) \in \mathscr{S}^{\infty} \times B M O_{2} \longmapsto(Y, Z \cdot W) \in \mathscr{S}^{\infty} \times B M O_{2}$ with coordinates solution to the n equations

$$
\begin{gathered}
Y_{s}^{i}=\varphi^{i}\left(X_{T}^{t, x}\right)+\int_{s}^{T}\left[f^{i}\left(Z_{u}^{i}\right)+h^{i}\left(U_{u}, V_{u}\right)\right] d u-\int_{s}^{T} Z_{u}^{i} d W_{u} \quad \forall s \in[0, T] \\
\forall \varepsilon \leq(3 n C)^{-1}, A_{\varepsilon}:=\frac{2 n}{\gamma^{2}} e^{\gamma\left\|\varphi\left(X_{T}^{t, x}\right)\right\| \infty}+2 C n \varepsilon\left(1+\frac{1}{\gamma}\right)\left(1+\frac{1}{\gamma^{2}}\right) e^{6 \gamma C T} e^{3 n \gamma\left\|\varphi\left(X_{T}^{t, x}\right)\right\| \infty} \\
\mathscr{B}_{\varepsilon}:=\left\{(U, V) \mid e^{2 \gamma\|U\| \infty, \varepsilon} \leq e^{6 \gamma C T} e^{3 n \gamma\left\|\varphi\left(X_{T}^{t, x}\right)\right\| \infty},\|V \cdot W\|_{B M O_{2}, \varepsilon}^{2} \leq A_{\varepsilon}\right\}
\end{gathered}
$$

$$
\begin{aligned}
& K^{2}:=3 C^{2} T+6 C^{2} A_{(3 n C)^{-1}},(Y, Z):=\Pi(U, V) \text { and }(\tilde{Y}, \tilde{Z}):=\Pi(\tilde{U}, \tilde{V}) \\
& \qquad\|Y-\tilde{Y}\|_{\infty, \varepsilon}^{2}+c_{1}(K)^{2}\|(Z-\tilde{Z}) \cdot W\|_{B M O_{2}, \varepsilon}^{2} \\
& \leq 4 n C^{2} \varepsilon^{2}\|U-\tilde{U}\|_{\infty, \varepsilon}^{2}+4 n C^{2} \varepsilon c_{2}(K)^{2}\|(V-\tilde{V}) \cdot W\|_{B M O_{2}, \varepsilon}^{2} \\
& \bar{K} \leftarrow \text { replace }\left\|\varphi\left(X_{T}^{t, x}\right)\right\|_{\infty} \text { by } \sqrt{\lambda} \text { with } \lambda \geq\left\|\varphi\left(X_{T}^{t, x}\right)\right\|_{\infty}^{2} \text { s.t }\left\|Y^{t, x}\right\|_{\infty, \varepsilon}^{2} \leq \lambda \\
& \eta_{\lambda} \text { s.t } 4 n C^{2} \eta_{\lambda} \max \left\{\eta_{\lambda},\left[\frac{c_{2}(\bar{K})}{c_{1}(\bar{K})}\right]^{2}\right\}<1 \text { permits to iterate }
\end{aligned}
$$

Theorem (Hu, Tang - 2016) :
$\operatorname{BSDE}\left(*_{1}\right)$ has a unique global solution $\left(Y^{t, x}, Z^{t, x}\right)$ on $[0, T]$ such that $Y^{t, x}$ is bounded. Furthermore, $Z \cdot W$ is a $B M O_{2}$ martingale.

Stability results

$$
u:(t, x) \in[0, T] \times \mathbb{R}^{d} \mapsto Y_{t}^{t, x}
$$

Proposition :

Suppose φ uniformly continuous, then $\forall t \in[0, T], u(t,$.$) uniformly continuous.$

Theorem :

Suppose that b and φ differentiable with respect to the space variable with bounded and uniformly continuous differentials.
Suppose also to have good properties for the partial differentials of h^{i} and ∇f^{i}, then u is of class \mathcal{C}^{1} with respect to the space variable.

Stability results

$$
u:(t, x) \in[0, T] \times \mathbb{R}^{d} \mapsto Y_{t}^{t, x}
$$

Proposition :
 Suppose φ uniformly continuous, then $\forall t \in[0, T], u(t,$.$) uniformly continuous.$

Theorem :

Suppose that b and φ differentiable with respect to the space variable with bounded and uniformly continuous differentials.
Suppose also to have good properties for the partial differentials of h^{i} and ∇f^{i}, then u is of class \mathcal{C}^{1} with respect to the space variable.

Stability results

$$
u:(t, x) \in[0, T] \times \mathbb{R}^{d} \mapsto Y_{t}^{t, x}
$$

Proposition :

Suppose φ uniformly continuous, then $\forall t \in[0, T], u(t,$.$) uniformly continuous.$

```
Theorem :

Suppose that \(b\) and \(\varphi\) differentiable with respect to the space variable with bounded and uniformly continuous differentials.
Suppose also to have good properties for the partial differentials of \(h^{i}\) and \(\nabla f^{i}\), then \(u\) is of class \(\mathcal{C}^{1}\) with respect to the space variable.

\section*{Stability results}
\[
u:(t, x) \in[0, T] \times \mathbb{R}^{d} \mapsto Y_{t}^{t, x}
\]
Proposition : ..... H.

Suppose \(\varphi\) uniformly continuous, then \(\forall t \in[0, T], u(t,\).\() uniformly continuous.\)

\section*{Theorem :}

Suppose that \(b\) and \(\varphi\) differentiable with respect to the space variable with bounded and uniformly continuous differentials.
Suppose also to have good properties for the partial differentials of \(h^{i}\) and \(\nabla f^{i}\), then \(u\) is of class \(\mathcal{C}^{1}\) with respect to the space variable.

\section*{Thank you for your attention}```

