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Sequential game

Two players: Nature and Investor

• Nature acts as an adversary, reveals state of the world St

• Investor acts by action at

• Investor incurs loss l(at, St)

Aim is to minimize regret, or rather perform well with respect to
the best action in hindsight.

Regret =
n∑
t=1

l(at, St)− inf
a∈A

n∑
t=1

l(a, St)



Regret Learning - Minimax

Our interest is in minimax regret

Regret = min
a1

max
S1

· · ·min
an

max
Sn

n∑
t=1

l(at, St)− inf
a∈A

n∑
t=1

l(a, St)

Probabilistic: S1, · · · , Sn are iid
Worst-case: S1, · · · , Sn are chosen adversarially

Regret defined above can be bounded above sub-linearly
Blackwell[4]. Standard assumptions in regret learning lead to
simple algorithms and upper bounds. Generally loss functions are
convex - analysis is easier.



Black-Scholes and extensions

• Black-Scholes-Merton is now well developed technology

• At the heart is perfect replication and continous trading

• Perfect replication is a myth and reality is discrete

• Challenge is to produce features of market using game theory



Black-Scholes

We can trade the underlying stock and bond to replicate an option
expiring at time T .
The self-financing replicating portfolio Vt equals the Black-Scholes
price Ct

Ct = E[g(ST )|Ft] = Vt, ∀t ∈ [0, T ]

These methods are well understood. Can the world of on-linearning
offer something new? We can treat the above case for a generic
convex payoff function g(·).



Regret and Options

Imagine we are deciding between a replicating strategy and buying
the option.

• We replicate the option by trading ∆i amounts of underlying

• At the end of our strategy we compare the payoff of the
derivative contract had we bought it and not replicated

• The difference between the two above is our regret for not
buying the option



Abernethy et al. [1] develop an interesting approach where the the
Black-Scholes value is seen as a game between nature and the
investor

• Nature sets the price fluctuation ri for each round:
S 7→ S(1 + ri)

• Investor hedges the final payout by trading the underlying
security $∆i amount and receives ∆iri

• There are n rounds

• After nth round Investor is charged
g(S) = g(S0 ·

∏n
i=1(1 + ri))

• Variance Budget for
∑n

i=1 ri ≤ c is c which is decreased round
by round



Minimax[1]

An online hedging strategy is an algorithm that selects sequence of
share purchares ∆′

is (where ∆ ∈ R) with the goal of minimizing

g(S0 ·
n∏
i=1

(1 + ri))−
n∑
i=1

∆iri ≡ Hedging regret

Hedging Regret is the difference between option value and the
hedging strategy.



Minimax

We have n trading rounds and m rounds remaining: n ∈ N and
0 ≤ m ≤ n. Total Variance budget c and jump constraint ζ per
round.

V
(n)
ζ (S; c;m) = inf

∆∈R
sup
r
{V (n)

ζ (S(1 + r); c− r2;m− 1)−∆r}

Base case is V
(n)
ζ (S; c; 0) = g(S). We can think of V as the

minimax price.



Minimax converges to BS

Under some technical conditions

lim
n→∞

Minimax pricen → Black-Scholes

Hedging Regret is the difference between option value and hedging
strategy.



Volatility games

Our aim

Introduce multiplayer zero-sum vol games.

Work in progress.



Volatility games

game(K,T ) corresponds to an option with strike K and maturity
T .
Different strikes and maturities correspond to different points on
the implied volatility surface. In our setting, c can be thought of as
σ2
imp · (T − t), the total variance budget available at start of

hedging.



Volatility games

Imagine two different strikes K1 and K2 where K1 6= K2. Then
the variance budgets of these games is different. We assume a
no-arbitrage vol surface.

Connection

Diffferent strike games are consistent with vol surface.

What is the interpretation in game theory?



Volatility smirk



Alphabet Inc. Vol Surface



Implied Volatility games

Implied volatility surface ! game(K,T ) ! Variance Budget.

Static no-arbitrage conditions for the implied volatility model are
well understood, some rough bounds can be obtained Hodges[2].



Implied Volatility games

How about dynamic no-arbitrage conditions and how they translate
to different games. This is a challenging issue under traditional
SDE models. Can game theory offer us something new.

We are aiming to extend the minmimax games to be consistent
across different strikes and maturities.



No Smile/Smirk



Smile/Smirk



Multi-player vol games

Protocol with assumption that the vol surface is given by market.
We focus on a given time slice and think about the game.

• Nature vs Players K1,K2,K3,K4

• Each player plays a zero-sum game with Nature with variance
budget c varying with strike

• Arbitrageurs exist who enforce the static no-arbitrage
conditions of the vol surface



Smile games

If players deviate from vol smile variance budget then they open
themselves up to infinite losses and the arbitrageurs can make
infinite amounts of free money by locking into correcting trades.



Conclusion

• Extend to dynamic Volatility games

• Link game theoretic ideas to classical math finance

• Rich seam of techniques in probability and math finance
which can be translated into game-theoretic setting

• Make the connection with game theory is a fruitful endeavor
in its own right

• Zero sum vol surface connection still has technical conditions
to be worked out
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