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Motivation

Fake Brownian motion

A fake Brownian motion (Xt)t≥0 is a continuous martingale
that has the same marginal distributions as the Brownian
motion (Wt)t≥0 but is not a Brownian motion.

Albin (2007) and Oleszkiewicz (2008) : explicit constructions
of fake Brownian motions.

Hobson (2009) : fake martingale diffusions.

Stochastic processes matching given marginals is a question
arising in mathematical finance.
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Motivation

Trying to match marginals

The market gives the prices of European Calls C(Ti ,Ki ) for
some Ti ,Ki ≥ 0.

A model (St)t≥0 is calibrated to European options if

∀T ,K ≥ 0, C(T ,K ) = E
[
DT (ST −K )+

]
.

By Breeden and Litzenberger (1978), {prices of European Call
options for all T ,K > 0} ⇐⇒ {marginal distributions of
(St)t≥0}.
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Motivation

The Dupire Model

Dupire Local Volatility model (1992), matching market
marginals:

dSt = rStdt + σDup(t, St)StdWt

σDup(T ,K ) =

√
2∂T C (T ,K ) + rK ∂K C (T ,K )

K 2∂2
KK C (T ,K )

Modelization of volatility risk?

Real market prices only on a finite set of (Ti ,Ki ) : robustness
to interpolation?
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Motivation

LSV models

Motivation: get processes with richer dynamics (e.g. take into
account volatility risk) and satisfying marginal constraints.

Alexander and Nogueira (2004) and Piterbarg (2006): Local
and Stochastic Volatility (LSV) model

dSt = rSt + f (Yt)σ(t, St)StdWt

“Adding uncertainty” to LV models by a random multiplicative
factor f (Yt), (Yt)t≥0 is a stochastic process.
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Motivation

Calibration of LSV Models

By Gyongy’s theorem (1988), the LSV model is calibrated to
C(T ,K ), ∀T ,K > 0 if

E
[
f 2(Yt)|St

]
σ2(t, St) = σ2

Dup(t,St)

σ(t, x) =
σDup(t, x)√

E [f 2(Yt)|St = x ]

The obtained SDE is nonlinear in the sense of McKean:

dSt = rStdt +
f (Yt)√

E[f 2(Yt)|St ]
σDup(t, St)StdWt .
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Simulation of calibrated LSV models and theoretical results

Simulation results

Madan and Qian, Ren (2007): solve numerically the
associated Fokker-Planck PDE, and get the joint-law of
(St ,Yt).

Guyon and Henry-Labordère (2011): efficient calibration
procedure based on kernel approximation of the conditional
expectation.

However, calibration errors seem to appear when the range of
f (Y ) is too large.
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Simulation of calibrated LSV models and theoretical results

Theoretical results

Abergel and Tachet (2010): local in time existence using
small perturbations on a compact.

Global existence and uniquess to LSV models remain on open
problem.
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The studied problem

A simpler SDE

Let Y be a r.v. with values in Y := {y1, ..., yd}.

We assume ∀i ∈ {1, ..., d}, αi = P(Y = yi ) > 0.

We study the SDE (FBM), with f > 0:

dXt =
f (Y )√

E [f 2(Y )|Xt ]
dWt

X0 ∼ µ.

X0,Y , (Wt)t≥0 are independent.
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The studied problem

The Fokker Planck system

We define for i ∈ {1, ..., d}, λi := f 2(yi ),
λmin := mini λi , λmax := maxi λi .

For i ∈ {1, ..., d}, define pi s.t., for φ ≥ 0 and measurable,
E
[
φ (Xt) 1{Y=yi}

]
=
∫

R
φ(x)pi (t, x)dx .

The associated Fokker-Planck system is:

∀i ∈ {1, ..., d}, ∂tpi =
1
2∂2

xx

(
∑j pj

∑j λjpj
λipi

)
pi (0) =αi µ

∑j pj is solution to the heat equation.
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Main Result

Existence to SDE (FBM) and fake Brownian motion

Theorem
Under Condition (C):

(C) : ∑
i

(
λi

λmax
+

λmax
λi

)
∨∑

i

(
λi

λmin
+

λmin
λi

)
< 2d + 4.

there exists a weak solution to the SDE (FBM).

Theorem
If f is not constant on Y , then any solution to the SDE (FBM) is
a fake Brownian motion.
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Ideas of proof

Rewriting into divergence form

The system can be rewritten in divergence form:
∂tp1
·
·

∂tpd

 =
1
2∂x

(Id +M)


∂xp1
·
·

∂xpd


 .

Mii =
∑j 6=i λjpj ∑j(λi − λl )pl(

∑j λjpj
)2 ,

Mik =
λipi ∑j(λj − λk)pj(

∑j λjpj
)2 , i 6= k.
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Ideas of proof

Computing standard energy estimates (S.E.E)

Multiply the system by (p1, ..., pd ), and integrate in x :

1
2 ∂t

(∫
R

d
∑
i=1

p2
i dx

)
= −1

2

∫
R
(∂x p1, ..., ∂x pd ) (Id + M)


∂x p1
·
·

∂x pd

 dx .

Goal : S.E.E. in L2([0,T ],H1(R)) ∩ L∞([0,T ], L2(R)).

We want (coercivity property):

∃ε > 0 s.t. ∀y ∈ Rd , y ∗My ≥ (ε− 1) |y |2.
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Ideas of proof

M as a convex combination

λ := ∑j λj pj
∑j pj

, wj := λj pj
∑k λkpk

.

Mii = ∑j 6=i wj
(

1− λi
λ

)
, and if i 6= k, Mik = ∑j 6=i wj

(
1− λi

λ

)
.

Then M = ∑d
j=1 wjMj , where

Mj :=



(
λ1
λ
− 1
)
· (

λj−1
λ
− 1
)(

1− λ1
λ

)
·
(

1− λj−1
λ

)
0

(
1− λj+1

λ

)
·
(

1− λd
λ

)(
λj+1

λ
− 1
)
· (

λd
λ
− 1
)


← row j.
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Ideas of proof

How to have ∀y ∈ Rd , y ∗My ≥ −|y |2

Sufficient to study Mj , ∀j , ∀λ ∈ [λmin,λmax ]

ai :=
(

λi
λ
− 1
)
> −1

y ∗Mjy = ∑i 6=j ai
(
y2

i − yiyj
)

Young’s inequality : −aiyiyj ≥ −(1+ ai )y2
i −

a2
i

4(1+ai )
y2

j

y ∗Mjy ≥ −
(
∑i 6=j y2

i
)
−
(

∑i 6=j
(λi−λ)

2

4λi λ

)
y2

j

Sufficient condition:

max
j

max
λ∈[λmin,λmax ]

(
∑
i 6=j

(
λi − λ

)2

4λi λ

)
≤ 1.
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Ideas of proof

How to have ∀y ∈ Rd , y ∗My ≥ −|y |2

Equivalent formulation:

max
j

max
λ∈[λmin,λmax ]

∑
i 6=j

(
λi

λ
+

λ

λi

)
≤ 2d + 2.

Convexity of λ→ λi
λ
+ λ

λi
on [λmin,λmax ] :

max
j ∑

i 6=j

(
λi

λmin
+

λmin
λi

)
∨max

j ∑
i 6=j

(
λi

λmax
+

λmax
λi

)
≤ 2d + 2.

Sufficient condition:

∑
i

(
λi

λmin
+

λmin
λi

)
∨∑

i

(
λi

λmax
+

λmax
λi

)
≤ 2d + 4.
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Ideas of proof

Getting coercivity of M

Remember coercivity property:

∃ε > 0 s.t. ∀y ∈ Rd , y ∗My ≥ (ε− 1) |y |2.

Obtained if

(C) : ∑
i

(
λi

λmax
+

λmax
λi

)
∨∑

i

(
λi

λmin
+

λmin
λi

)
< 2d + 4.

Ensures that the range f 2(Y ) is not too large.

Fact
M satisfies the coercivity property if and only if (C) holds.



Processes matching given marginals A new fake Brownian motion Existence of Calibrated RSLV models Conclusion

Ideas of proof

Step 1/3: Existence to an approximate PDS when
µ ∈ L2(R)

Assume that µ(dx) = p0(x)dx , p0 ∈ L2(R).

For ε > 0, use Galerkin’s method to solve an approximate
PDE: 

∂tpε
1
·
·

∂tpε
d

 =
1
2 ∂x

(Id + Mε)


∂x pε

1
·
·

∂x pε
d




(pε
1(0), ..., pε

d (0)) = (α1, ..., αd ) p0
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Ideas of proof

Step 1/3: Existence to an approximate PDS when
µ ∈ L2(R)

Mε
ii =

∑j 6=i λj
(

pε
j

)+
∑j (λi − λl )

(
pε

l
)+(

ε ∨∑j λj
(

pε
j

)+)2 ,

Mε
ik =

λi (pε
i )

+ ∑j (λj − λk )
(

pε
j

)+
(

ε ∨∑j λj
(

pε
j

)+)2 , i 6= k.

Taking p−ε as test function, we show that pε ≥ 0.
∀ε, ∀i ,∑j Mε

ji = 0 =⇒ ∑j pε
j > 0.

ε→ 0, existence of a solution to the original PDS.



Processes matching given marginals A new fake Brownian motion Existence of Calibrated RSLV models Conclusion

Ideas of proof

Step 2/3: Existence to the PDS when µ ∈ P(R)

By mollification of µ, we use the results of Step 1 to extract a
solution to the PDS when µ ∈ P(R).

We use the fact that ∑j pj is solution to the heat equation.
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Ideas of proof

Step 3/3: Existence to the SDE for µ0 ∈ P(R)

We use the results of Figalli (2008):

∃Fokker-Planck solution (µt)t≥0

=⇒ ∃martingale solution with marginals given by (µt)t≥0,

to prove existence to

dXt =
f (Y )√

E [f 2(Y )|Xt ]
dWt

X0 ∼ µ

with X0,Y , (Wt)t≥0 independent.
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The calibrated RSLV model

Presentation

We consider the following dynamics (RSLV):

dSt = rStdt +
f (Yt)√

E [f 2(Yt)|St ]
σDup(t,St)StdWt ,

where (Yt)t≥0 takes values in Y , and

P (Yt+dt = yj |Yt = yi , log St = x) = qij(x)dt.

Switching diffusion, special case of LSV model.

Jump distributions and intensities are functions of the asset
level.
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The calibrated RSLV model

Assumptions

(C), (Coerc. 1): f satisfies condition (C).
(HQ), (Bounded I) ∃q > 0, s.t. ∀x ∈ R, |qij(x)| ≤ q.

We define σ̃Dup(t, x) := σDup(t, ex ).
(H1), (Bounded vol.) σ̃Dup ∈ L∞([0,T ],W 1,∞(R)).
(H2), (Coerc. 2) ∃σ > 0 s.t. σ ≤ σ̃Dup a.e. on [0,T ]×R,.
(H3), (Regul. 1) ∃η ∈ (0, 1], ∃H0 > 0, s.t.
∀s, t ∈ [0,T ], ∀x , y ∈ R,

|σ̃Dup(s, x)− σ̃Dup(t, y)| ≤ H0 (|x − y |η + |t − s |η) .

(H4), (Regul. 2) for a.e. x ∈ R,

∂x σDup(s, x) →s→t
∂x σDup(t, x)
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Main results

Main results

Theorem
Under Conditions (H1)-(H4), (HQ) and (C) there exists a weak
solution to the SDE (RSLV).

The proof is an adaptation of the proof for SDE (FBM)
combined with an extension of the results of Figalli for a
jumping process.
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Summary

We obtained existence of a class of fake Brownian motions by
1 Solving the associated Fokker-Planck PDE,
2 Linking with existence of martingale solution and SDEs.

With similar arguments, we obtained existence of calibrated
RSLV models :

dSt = rStdt +
f (Yt)√

E [f 2(Yt)|St ]
σDup(t,St)StdWt ,

where for Y , jump intensities and laws depend on Xt .
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Thank you!

Thank you for your attention!
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