Hörmander's condition for delayed SDEs

Ibrahim EKREN

ETH Zurich Joint work (in progress) with Reda Chhaibi

1 July 2016, 3rd Young Researchers Meeting, Le Mans

(本間) (本語) (本語)

Table of contents

- The forward SDE
- Objectives
- 2 Hörmander's argument
 - Sufficient condition for the existence of the densities
 - Rough Paths
- 3 Estimates for Delayed SDEs
 - The evolution of the derivative of the flow
 - Norris' Lemma
 - Hörmander's condition
- 4 Examples
 - Uniform Ellipticity
 - Hypoellipticity
 - Noise from delay

個 と く ヨ と く ヨ と

The forward SDE Objectives

Notations

• We are interested in the following stochastic differential equation on $\left[0,T\right]$,

$$X_t = X_0 + \int_0^t \sum_{k=0}^m V_k(r, X) \circ dW_r^k$$

= $X_0 + \int_0^t \sum_{k=0}^m V_k(X_r, X_{r-h_1}, \dots, X_{r-h_{N-1}}) \circ dW_r^k$

- for some smooth functions $V_k : (\mathbb{R}^d)^N \to \mathbb{R}^d$ and $0 = h_0 < h_1 < \cdots < h_{N-1} < T$ fixed,
- $X_t \in \mathbb{R}^d$, and $\{W_t^k\}_{t \ge 0, k=1,...,m}$ is a *m*-dimensional Brownian motion $W_t^0 = t$.

・ロン ・回 と ・ ヨ と ・ ヨ と

The forward SDE Objectives

Existence and uniqueness of the solutions of the SDE

Assumption (Standing regularity assumption on V_k)

For all k = 0, ..., m, the mappings $V_k : \mathbb{R}^{d \times N} \to \mathbb{R}^d$ are assumed to be smooth with bounded derivatives at all order.

Proposition

Under the standing assumptions X_t exists for $t \ge 0$ and

$$\mathbb{E}\left[\left\|X\right\|_{\infty,[0,t]}^p\right] < \infty, \text{ for all } t > 0, \ p \geq 2.$$

Proof by Picard's iteration with the norm

$$||X||_{\infty,[0,t]} := \sup_{s \in [0,t]} |X_s|$$

and Grönwall's inequality.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Examples

The forward SDE Objectives

Objectives

- Sufficient condition so that the distribution of X_T is absolutely continuous with respect to the Lebesgue measure.
- Sufficient condition so that the density of X_T with respect to the Lebesgue measure is smooth.
- Adapt the arguments of the Markovian case to take into account the noise coming from the delay.
- \implies Hörmander-like spanning condition of \mathbb{R}^d .

(4 回) (4 回) (4 回)

Introduction

Hörmander's argument Estimates for Delayed SDEs Examples The forward SDE Objectives

Objectives

- Sufficient condition so that the distribution of X_T is absolutely continuous with respect to the Lebesgue measure.
- Sufficient condition so that the density of X_T with respect to the Lebesgue measure is smooth.
- Adapt the arguments of the Markovian case to take into account the noise coming from the delay.
- \implies Hörmander-like spanning condition of \mathbb{R}^d .
- Uniformly elliptic and path-dependent case was treated by Kusuoka-Stroock(1982) and Bally-Caramellino (2016).
- Bell-Mohammed (1992), $V(X_{r-h})$ can be degenerate at X_0 , but assumption on $X_{[-T,0]}$ to compensate it.

・ロン ・回と ・ヨン・

Sufficient condition for the existence of the densities Rough Paths

・ロン ・回と ・ヨン ・ヨン

Malliavin's derivative

• X_T is Malliavin differentiable (Kusuoka-Stroock).

Define

$$T_h := h_{N-1} \lor \sup_{i=1...N-1} (T - (h_i - h_{i-1})) \in (0,T).$$

• The Malliavin derivative $\mathcal{D}_t X_T$ satisfies for all $T_h \leq t \leq T$,

$$\mathcal{D}_t X_T = V(t, X) + \sum_{k=0}^m \int_t^T \partial_0 V_k(r, X) \mathcal{D}_t X_r \circ dW_r^k$$

where $\partial_i V_k(r, \mathbf{x}) \in \mathbb{R}^{d \times d}$ is Jacobian of V_k in the *i*th component.

Sufficient condition for the existence of the densities Rough Paths

・ 同 ト ・ ヨ ト ・ ヨ ト …

Sufficient condition on the Malliavin Matrix

- Let $\mathcal{M} := \int_0^T \mathcal{D}_s X_T (\mathcal{D}_s X_T)^* ds$ be the Malliavin matrix.
- Summary of the Malliavin calculus for regularity of laws: If $\forall p > 0$, $\mathbb{E}\left(\|\mathcal{M}^{-1}\|^p \right) < \infty$ then X_T has density with respect to the Lebesgue measures and its density is smooth.

Sufficient condition for the existence of the densities Rough Paths

Sufficient condition on the Malliavin Matrix

- Let $\mathcal{M} := \int_0^T \mathcal{D}_s X_T (\mathcal{D}_s X_T)^* ds$ be the Malliavin matrix.
- Summary of the Malliavin calculus for regularity of laws: If ∀p > 0, E (||M⁻¹||^p) < ∞ then X_T has density with respect to the Lebesgue measures and its density is smooth.
- Sufficient condition : There exist $\delta, q > 0$, $\mathcal{R} > 0$ with $\mathbb{E}[\mathcal{R}^p] < \infty$ for all p > 1 such that for all $\eta \in \mathbb{R}^d$ with $|\eta| = 1$ we have

 $\delta \leq \mathcal{R} \langle \eta, \mathcal{M} \eta \rangle^q.$

• Estimate from below $\int_0^T |\eta^* \mathcal{D}_s X_T|_{\mathbb{R}^d}^2 ds$ with $|\eta| = 1$ fixed.

Sufficient condition for the existence of the densities Rough Paths

・ 同 ト ・ ヨ ト ・ ヨ ト

Rough Paths

- Denote $\mathcal{W}_t = (W_t, W_{t-h_1}, \dots, W_{t-h_{N-1}}) \in (\mathbb{R}^d)^N$ and we fix $\frac{1}{3} < \alpha < \frac{1}{2} < \theta < 2\alpha$.
- We need to define $\mathbb{W}_{s,t}^{i,j} := \int_s^t W_{r-h_i,s-h_i} \otimes \circ dW_{r-h_j}$. If $h_i \ge h_j$. This is the classical Stratonovich integral. For $h_i < h_j$, the anticipative integral can be deduced from the first order condition

$$\mathbb{W}_{s,t}^{i,j} + \mathbb{W}_{s,t}^{j,i} = \mathcal{W}_{s-h_i,t-h_i} \otimes \mathcal{W}_{s-h_j,t-h_j}.$$

Sufficient condition for the existence of the densities Rough Paths

Rough Paths

- Denote $\mathcal{W}_t = (W_t, W_{t-h_1}, \dots, W_{t-h_{N-1}}) \in (\mathbb{R}^d)^N$ and we fix $\frac{1}{3} < \alpha < \frac{1}{2} < \theta < 2\alpha$.
- We need to define $\mathbb{W}_{s,t}^{i,j} := \int_s^t W_{r-h_i,s-h_i} \otimes \circ dW_{r-h_j}$. If $h_i \ge h_j$. This is the classical Stratonovich integral. For $h_i < h_j$, the anticipative integral can be deduced from the first order condition

$$\mathbb{W}_{s,t}^{i,j} + \mathbb{W}_{s,t}^{j,i} = \mathcal{W}_{s-h_i,t-h_i} \otimes \mathcal{W}_{s-h_j,t-h_j}.$$

- One can also equivalently appeal to Nualart-Pardoux (88) and Nualart-Ocone (89) where an anticipative Stratonovich integral is defined.
- (W, W) ∈ C^α, the set of α-Holder continuous rough paths (with iterated integrals in C^{2α}).

Sufficient condition for the existence of the densities Rough Paths

SDE as Rough integral

 \bullet We say that (Y,Y^\prime) is a controlled path if

$$Y_t^{k,i} - Y_s^{k,i} = \sum_{k'=1}^m \sum_{i'=0}^{N-1} Y_s^{k,i,k',i'} \mathcal{W}_{s,t}^{k',i'} + O(|t-s|^{2\alpha}).$$

 \bullet We define the rough integral of a controlled rough path Y

$$\sum_{k,i} \int Y_r^{k,i} d\mathcal{W}_r^{k,i} := \lim_{|\mathcal{P}| \to 0} \sum_{[u,v] \in \mathcal{P}} Y_u \mathcal{W}_{u,v} + Y'_u \mathbb{W}_{u,v}.$$

• For all $t \in [T_h, T]$,

$$X_{t} = X_{0} + \int_{0}^{t} \sum_{k=0}^{m} V_{k}(r, X_{r}, X_{r-h_{1}}, \dots, X_{r-h_{N-1}}) d\mathcal{W}_{r}^{k,0}$$
$$J_{t,T} = \frac{d^{"}X_{T}"}{d^{"}X_{t}"} = Id + \sum_{k=0}^{m} \int_{t}^{T} \partial_{0} V_{k}(r, X) J_{t,r} d\mathcal{W}_{r}^{k,0}$$

Sufficient condition for the existence of the densities Rough Paths

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Integration with controlled rough paths

• In particular

$$\mathcal{D}_{t}X_{T} = J_{t,T}V(t,X), \quad J_{t,T} = J_{T_{h},T}J_{T_{h},t}^{-1} \text{ and} \\ J_{T_{h},t}^{-1} = Id - \sum_{k=0}^{m} \int_{T_{h}}^{t} J_{T_{h},r}^{-1}\partial_{0}V_{k}(r,X)d\mathcal{W}_{r}^{k,0}.$$

• Denote $Z_{V_j}(t) = \eta^* J_{t,T} V_j(t,X)$, we want lower bounds for

$$\mathcal{M} := \sum_{j=1}^{m} \int_{0}^{T} |\eta^{*} J_{s,T} V_{j}(s,X)|_{\mathbb{R}^{d}}^{2} ds = \sum_{j=1}^{m} \|Z_{V_{j}}\|_{L^{2}[0,T]}^{2}$$
$$\geq \sum_{j=1}^{m} \|Z_{V_{j}}\|_{L^{2}[T_{h},T]}^{2}$$

Sufficient condition for the existence of the densities Rough Paths

・ロン ・回と ・ヨン・

æ

First estimate

• Interpolation inequality

$$\sup_{s \in [T_h, T]} |Z_{V_j}(s)| \leq C_{h, T} ||Z_{V_j}||_{L^2([T_h, T])}^{\frac{2\alpha}{2\alpha + 1}} ||Z_{V_j}||_{\alpha, [T_h, T]}^{\frac{1}{2\alpha + 1}} \\ \leq C_{h, T} ||Z_{V_j}||_{L^2([0, T])}^{\frac{2\alpha}{2\alpha + 1}} ||Z_{V_j}||_{\alpha, [T_h, T]}^{\frac{1}{2\alpha + 1}}.$$

A first estimate

$$\sup_{j=1...m} \|Z_{V_j}\|_{\infty,[T_h,T]} \le C_{h,T} \mathcal{M}^{\frac{2\alpha}{2\alpha+1}} \sum_{j=1}^m \|Z_{V_j}\|_{\alpha,[T_h,T]}^{\frac{1}{2\alpha+1}}.$$

• $L^{\infty}([T_h, T])$ estimates for Z_{V_j} .

The evolution of the derivative of the flow Norris' Lemma Hörmander's condition

Brackets

• By Ito's formula, for all $j = 1, \dots, m$ and $s, t \in [T_h, T]$

$$\begin{aligned} V_j(t,X) - V_j(s,X) &= \sum_{k=0}^m \int_s^t \partial_0 V_j(r,X) V_k(r,X) d\mathcal{W}_r^{k,0} \\ &+ \sum_{\substack{0 \le k \le m \\ 1 \le i \le N-1}} \int_s^t \partial_i V_j(r,X) V_k(r-h_i,X) d\mathcal{W}_r^{k,i}. \end{aligned}$$

- To define the last term one needs to extends the \mathcal{W} to take into account $t (h_i + h_j)$ terms in the control of the integrands.
- We define the Bracket

$$[V_j, V_k] := \partial_0 V_j V_k - \partial_0 V_k V_j.$$

・ロン ・回と ・ヨン・

The evolution of the derivative of the flow Norris' Lemma Hörmander's condition

Evolution of Z_{V_i}

• For all
$$s, t \in [T_h, T]$$

$$Z_{V_j}(t) - Z_{V_j}(s) = \sum_{k=1}^m \int_s^t Z_{[V_j, V_k]}(r) d\mathcal{W}_r^{k,0} + \sum_{k=1}^m \sum_{i=1}^N \int_s^t Z_{\partial_i V_j(\cdot, X) V_k(\cdot - h_i, X)}(r) d\mathcal{W}_r^{k,i} + \int_s^t Z_{\{[V_j, V_0] + \sum_{i=1}^{N-1} \partial_i V_j(\cdot, X) V_0(\cdot - h_i, X)\}}(r) dr.$$

• $\{d\mathcal{W}_r^{k,i}: r \in (T_h,T), k = 1 \dots m, i = 0, \dots, N-1\}$ are the increments of a $m \times N$ -dimensional Brownian Motion.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

The evolution of the derivative of the flow Norris' Lemma Hörmander's condition

θ -Holder Roughness

Definition

 $W: [0,T] \to \mathbb{R}^m$ is θ -Holder rough : there exists L > 0 such that for any $\varphi \in \mathbb{R}^m$, $s \in [0,T]$ and $\varepsilon \in (0,1)$, there exists $t \in [0,T]$ such that

$$|t-s| \leq \varepsilon$$
, and $|\varphi W_{s,t}| \geq L \varepsilon^{\theta} |\varphi|$.

Proposition (Norris' Lemma)

There exists a deterministic constant $C_T > 0$ and p, q > 0 s.t. if

$$Z_t = \int_0^t A_s dW_s + \int_0^t B_s ds, \,\,$$
 with A,B controlled rough paths

then $||A||_{\infty,[0,T]} + ||B||_{\infty,[0,T]} \le C_T \left(\frac{\mathcal{R}}{L_{\theta}}\right)^p ||Z||_{\infty,[0,T]}^q$.

The evolution of the derivative of the flow Norris' Lemma Hörmander's condition

A variant of Norris Lemma

Proposition

The path $\mathcal{W}: [T_h, T] \to \mathbb{R}^{m \times N}$ is θ -Holder rough.

Proposition (Variant of Norris' Lemma)

There exists a deterministic constant $C_T > 0$ and p, q > 0 such that

$$\begin{split} \|Z_{[V_{j},V_{k}]}\|_{\infty,[T_{h}',T]} + \|Z_{\partial_{i}V_{j}}(\cdot,X)V_{k}(\cdot-h_{i},X)\|_{\infty,[T_{h}',T]} \\ + \|Z_{\{[V_{j},V_{0}]+\sum_{i=1}^{N-1}\partial_{i}V_{j}}(\cdot,X)V_{0}(\cdot-h_{i},X)\}}\|_{\infty,[T_{h}',T]} \\ \leq C_{h,T}\mathcal{M}^{q_{1}}\left(\frac{\mathcal{R}}{L_{\theta}}\right)^{p_{1}}. \end{split}$$

イロン イヨン イヨン イヨン

æ

The evolution of the derivative of the flow Norris' Lemma Hörmander's condition

A variant of Norris Lemma

Proposition

The path $\mathcal{W}: [T_h, T] \to \mathbb{R}^{m \times N}$ is θ -Holder rough.

Proposition (Variant of Norris' Lemma)

There exists a deterministic constant $C_T > 0$ and p, q > 0 such that

$$\begin{aligned} \|Z_{[V_j,V_k]}\|_{\infty,[T'_h,T]} + \|Z_{\partial_i V_j(\cdot,X)V_k(\cdot-h_i,X)}\|_{\infty,[T'_h,T]} \\ + \|Z_{\{[V_j,V_0]+\sum_{i=1}^{N-1}\partial_i V_j(\cdot,X)V_0(\cdot-h_i,X)\}}\|_{\infty,[T'_h,T]} \\ \leq C_{h,T}\mathcal{M}^{q_1}\left(\frac{\mathcal{R}}{L_{\theta}}\right)^{p_1}. \end{aligned}$$

• Only $Z_{[V_i,V_k]}$ is controlled by \mathcal{W} .

イロト イヨト イヨト イヨト

The evolution of the derivative of the flow Norris' Lemma Hörmander's condition

Link between Hörmander condition and the Malliavin derivatives

Definition

We define the family of hyperplanes generated by the vector fields,

$$\mathcal{V}_0:=\{(s,\mathbf{x})
ightarrow V_k(s,\mathbf{x}):k=1,\cdots,m\}$$
 and

$$\mathcal{V}_{j+1} := \mathcal{V}_j \cup \{[F, V_k] : F \in \mathcal{V}_j, k = 1, \cdots, m\}$$
 and

We also define the extension of the hyperplanes

$$\overline{\mathcal{V}}_{j+1} := \mathcal{V}_{j+1} \bigcup_{F \in \mathcal{V}_j} \{ (s, \mathbf{x}) \to [F, V_0](s, \mathbf{x}) + \sum_{i=1}^{N-1} \partial_i F(s, \mathbf{x}) V_0(s - h_i, \mathbf{x}) \}$$

The evolution of the derivative of the flow Norris' Lemma Hörmander's condition

Link between Hörmander condition and the Malliavin derivatives

Definition

We define the family of hyperplanes generated by the vector fields,

$$\mathcal{V}_0:=\{(s,\mathbf{x})
ightarrow V_k(s,\mathbf{x}):k=1,\cdots,m\}$$
 and

$$\mathcal{V}_{j+1} := \mathcal{V}_j \cup \{[F, V_k] : F \in \mathcal{V}_j, k = 1, \cdots, m\}$$
 and

We also define the extension of the hyperplanes

$$\begin{split} \overline{\mathcal{V}}_{j+1} &:= \quad \mathcal{V}_{j+1} \bigcup_{F \in \mathcal{V}_j} \{ (s, \mathbf{x}) \to [F, V_0](s, \mathbf{x}) + \sum_{i=1}^{N-1} \partial_i F(s, \mathbf{x}) V_0(s - h_i, \mathbf{x}) \} \\ & \bigcup_{F \in \mathcal{V}_j} \{ (s, \mathbf{x}) \to \partial_i F(s, \mathbf{x}) V_k(s - h_i, \mathbf{x}) : \ k = 1 \cdots m, \ i = 1, \dots, N-1 \}. \end{split}$$

The evolution of the derivative of the flow Norris' Lemma Hörmander's condition

Hormander

- V_{j+1} is smaller than its Markovian counter part.
- \overline{V}_{j+1} includes the Brackets with V_0 .
- Additional noise coming from the delay.

Assumption (Hörmander Condition for Delayed equations)

There exists j_0 such that $\overline{\mathcal{V}}_{j_0}$ spans \mathbb{R}^d uniformly

$$\inf_{\mathbf{x}\in C([0,T])} \inf_{|\eta|=1} \sup_{F\in \overline{V}_{j_0}} |\eta^* F(T,\mathbf{x})| > 0$$

• Spanning uniform in \mathbf{x} and in the rank j_0 .

・ロン ・回 と ・ ヨン ・ ヨン

The evolution of the derivative of the flow Norris' Lemma Hörmander's condition

Main theorem

Theorem (Main theorem)

Under the standing regularity assumption of $\{V_k\}$ and the Hörmander condition X_T has a smooth density with respect to the Lebesgue measure.

• By induction one can show that

$$0 < \delta := \inf_{\mathbf{x} \in C([0,T])} \inf_{|\eta|=1} \sup_{F \in \overline{V}_{j_0}} |\eta^* F(T, \mathbf{x})|$$

$$\leq \inf_{|\eta|=1} \sup_{F \in \overline{V}_{j_0}} |\eta^* F(T, X)|$$

$$\leq C_{j_0,h,T} \frac{\mathcal{R}^{p_{j_0}}}{L^{p_{j_0}}} \mathcal{M}^{q_{j_0}}.$$

(1日) (1日) (日)

Uniform Ellipticity Hypoellipticity Noise from delay

Unifomly non-degenerate

• Assume that there exists $\delta > 0$ such that for all $|\eta| = 1$

 $\sum_{k=1}^{m} |\eta^* V_k|^2 \ge \delta$

Then Hörmander's condition for delayed SDEs is satisfied.

• This case was treated by Kusuoka-Stroock(1982) and Bally-Caramellino (2016) without the assumption on the delay.

イロト イポト イヨト イヨト

Uniform Ellipticity Hypoellipticity Noise from delay

Langevin Equation with Delay

Consider the diffusion in \mathbb{R}^2 ,

$$dp_t = V_0(p_t, q_t)dt + V_1(p_t, q_t, p_{t-h}, q_{t-h}) \circ dW_t$$

$$dq_t = p_t dt.$$

with V_1 uniformly elliptic. We check the spanning condition

 $\mathcal{V}_0 = \left\{ \begin{pmatrix} V_1 \\ 0 \end{pmatrix} \right\}$

・ロト ・回ト ・ヨト ・ヨト

2

Uniform Ellipticity Hypoellipticity Noise from delay

Langevin Equation with Delay

Consider the diffusion in \mathbb{R}^2 ,

$$dp_t = V_0(p_t, q_t)dt + V_1(p_t, q_t, p_{t-h}, q_{t-h}) \circ dW_t$$

$$dq_t = p_t dt.$$

with V_1 uniformly elliptic. We check the spanning condition

$$\mathcal{V}_0 = \left\{ \begin{pmatrix} V_1 \\ 0 \end{pmatrix} \right\} = \mathcal{V}_j$$

We compute $\overline{\mathcal{V}}_1$

$$\begin{bmatrix} \begin{pmatrix} V_1 \\ 0 \end{pmatrix}, \begin{pmatrix} V_0 \\ p_s \end{pmatrix} \end{bmatrix} + \partial_1 \begin{pmatrix} V_1 \\ 0 \end{pmatrix} \begin{pmatrix} V_0(p_{s-h}, q_{s-h}) \\ 0 \end{pmatrix} = \begin{pmatrix} * \\ -V_1 \end{pmatrix}$$

 \Rightarrow uniform spanning

・ロト ・回ト ・ヨト ・ヨト

Uniform Ellipticity Hypoellipticity Noise from delay

Noise from the delay

We now consider the following diffusion

$$\begin{pmatrix} p_t \\ q_t \\ r_t \end{pmatrix} = \int_0^t \begin{pmatrix} 1 \\ 1 \\ -r_{s-h} \end{pmatrix} dW_s^1 + \int_0^t \begin{pmatrix} -p_{s-h} \\ q_{s-h} \\ \sqrt{1+r_{s-h}^2} \end{pmatrix} dW_s^2$$

We check the spanning condition

$$\mathcal{V}_0 = \left\{ \begin{pmatrix} 1\\1\\-r_{s-h} \end{pmatrix}, \begin{pmatrix} -p_{s-h}\\ \frac{q_{s-h}}{\sqrt{1+r_{s-h}^2}} \end{pmatrix} \right\}$$

・ロン ・回と ・ヨン・

æ

Uniform Ellipticity Hypoellipticity Noise from delay

Noise from the delay

We now consider the following diffusion

$$\begin{pmatrix} p_t \\ q_t \\ r_t \end{pmatrix} = \int_0^t \begin{pmatrix} 1 \\ 1 \\ -r_{s-h} \end{pmatrix} dW_s^1 + \int_0^t \begin{pmatrix} -p_{s-h} \\ q_{s-h} \\ \sqrt{1+r_{s-h}^2} \end{pmatrix} dW_s^2$$

We check the spanning condition

$$\mathcal{V}_0 = \left\{ \begin{pmatrix} 1 \\ 1 \\ -r_{s-h} \end{pmatrix}, \begin{pmatrix} -p_{s-h} \\ q_{s-h} \\ \sqrt{1+r_{s-h}^2} \end{pmatrix}
ight\} = \mathcal{V}_j$$

We compute the semi-brackets $\partial_1 V_2(t)V_1(t-h)$, $\partial_1 V_1(t)V_2(t-h)$ hence the subset of $\overline{\mathcal{V}}_0$:

$$\begin{cases} \begin{pmatrix} 1\\1\\-r_{s-h} \end{pmatrix}, \begin{pmatrix} -1\\1\\-\frac{r_{s-h}r_{s-2h}}{\sqrt{1+r_{s-h}^2}} \end{pmatrix}, \begin{pmatrix} 0\\0\\-\sqrt{1+r_{s-2h}^2} \end{pmatrix} \end{cases} \subset \overline{\mathcal{V}}_0$$

$$\implies \text{ uniform spanning}$$

Uniform Ellipticity Hypoellipticity Noise from delay

THANK YOU!

Ibrahim EKREN Hörmander's condition for delayed SDEs

Uniform Ellipticity Hypoellipticity Noise from delay

THANK YOU! ALLEZ LES BLEUS

Ibrahim EKREN Hörmander's condition for delayed SDEs

▲□→ ▲圖→ ▲厘→ ▲厘→

æ