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Introduction



A practical example. In energy markets, retailers buy energy in
the wholesale market and re-sell it to final customers.

The final prices are piecewise constant processes, due to binding
clauses in the contracts. Hence, each retailer has to decide
when and how to change the price he asks to his customers.
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A practical example. In energy markets, retailers buy energy in
the wholesale market and re-sell it to final customers.

The final prices are piecewise constant processes, due to binding
clauses in the contracts. Hence, each retailer has to decide
when and how to change the price he asks to his customers.

High final prices mean high incomes, but few customers; conversely,
low final prices imply high market share, but low unitary incomes.
Moreover, the market share also depends on the opponent’s choices.

Each retailer wants to maximize his incomes: we model this
competition as a two-player stochastic differential game and
look for Nash equilibria in the retailers’ price management policy.
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and assume that two retailers (players) are present in the market.
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and assume that two retailers (players) are present in the market.

They buy energy at wholesale price S; = s + ut + o W;.

They re-sell the energy to their customers. The final price
asked by player i is piecewise constant: P} = p' +ZT A<t i k-

The price management policy of player i is determined by the
sequence u' = {(7j k,0j k) }k (impulse control), where 7; , are
the intervention times and §; x are the corresponding shifts.

Intervening has a (fixed) cost for player i, denoted ¢;. He also
faces operational costs, quadratic w.r.t. his market share ¢'.

The players’ market share depends on the difference between
the prices they ask: ®i = ®(P} — Pl) € [0,1], for suitable ®.
In our model, ®(n) = min {1, max{0, —(n — A)/(2A)} }.
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The problem. We look for Nash equilibria, in order to maximize
the players’ incomes. In particular, player i wants to maximize
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This is a two-player nonzero-sum game with impulse controls.

To the best of our knowledge, no references are present in the
literature about this class of problems.
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Indeed, related works only address the following problems.

Stopping time Impulse control
One-pl. control problem Several authors Several authors
Two-pl. zero-sum game Friedman Cosso

Two-pl. nonzero-sum game Bensoussan-Friedman 77

Open problem: the players choose u’ = {(7],6})}x to maximize
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Indeed, related works only address the following problems.

Stopping time Impulse control
One-pl. control problem Several authors Several authors
Two-pl. zero-sum game Friedman Cosso
Two-pl. nonzero-sum game Bensoussan-Friedman 77

Our goal. To study nonzero-sum stochastic differential games with
impulse controls.

1. Rigorous formalization of the problem.
2. Verification theorem.

3. Application to competition in retail energy markets.
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e Player i € {1,2} wants to maximize the following payoff
(running payoff, intervention costs and gains, terminal cost):
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The idea. Our problems have the following key-points.

@ The players can affect a process, modelled by a SDE, by
discrete-time interventions (impulse controls).

@ Any intervention by one of the players corresponds to
a cost for the intervening player and a gain for the opponent.

e Player i € {1,2} wants to maximize the following payoff
(running payoff, intervention costs and gains, terminal cost):
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o We Iook for Nash equilibria.

We now provide a rigorous formulation for such problems.
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The process. The underlying process, when none of the player
intervenes, is modelled by dYs = b(Ys)ds + o(Ys)dWs € RY. The
game ends at 7, the exit time of Y from a fixed subset S C R".

Interventions of the players. When player i € {1,2} decides to
intervene with impulse §, the process is shifted from state y to state
[(y,d). Moreover, player i pays a penalty ¢;(x,d) (interven. cost),
whereas his opponent player j earns 1;(x, d) (intervention gains).

Impulse controls. The action of player i is modelled by a
sequence (impulse control) in the form u; = {(7i k, 0i k) }k>1,
where {7; « } are increasing stopping times (the intervention times)
and {6; x }x are random variables (the corresponding impulses).
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Strategies. The behaviour of the players, modelled by impulse
controls, is driven by strategies.

A strategy for player i € {1,2} is a couple p; = (A}, &), where A;
is a fixed subset of RY and &; is a continuous function. }
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Strategies. The behaviour of the players, modelled by impulse
controls, is driven by strategies.

A strategy for player i € {1,2} is a couple p; = (A}, &), where A;
is a fixed subset of RY and &; is a continuous function. J

Once the couples p; = (A;,&;) and a starting point x have been
chosen, a couple of impulse controls and a controlled process
X = X*%192 gre uniquely defined by the following procedure:

- player i intervenes if and only if the process exits from A;,
in which case the impulse is given by &;(y), where y is the state;
- if both the players want to act, player 1 has the priority.
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(running payoff, intervention costs, intervention gains, final cost):
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Nash equilibria. Let p; = (A;,&;) be the strategies and x be the
initial state. Player i aims at maximising the following functional
(running payoff, intervention costs, intervention gains, final cost):
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We say that a couple of strategies (7, ¢3) is a Nash equilibrium if

Vi) == S (x; 08, 03) = S (xi o1, 05), Ve,
V2(x) == S(x; 0%, 93) = P(xi ot 02), Voo
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Our goal. To prove a verification theorem: if two functions are
regular enough and satisfy suitable equations, they are actually the
value funct. of the game and we can characterize Nash strategies.

First of all, some heuristics about the appropriate equations for
Vi, Vo and the Nash equilibria. To simplify, let ['(x,d) = x + 4.

Heuristics on 7. Assume we know V; and that there exists ¢; s.t.
{8i(x)} = argmax; (Vi(x + 8) + ¢i(x, 9)), |

for each i€{1,2}, x€S. Then, for each i,j€{1,2}, i#j, x€S, let
M Vi(x) = Vi(x + 6i(x)) + ¢i(x, i(x)), J

HiVi(x) = Vi(x + 6;(x)) + i (x, 6j(x)).
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Let x be the current state of the process. Interpretation:
@ Vi(x) is the value of the game for player i;

@ J;(x) is the optimal impulse of player i in case of an immediate
intervention by player i himself;

@ M,;Vi(x) (resp. H;Vi(x)) is the value of the game for player i
in case of an immediate interv. by player i (resp. player j).
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Let x be the current state of the process. Interpretation:

@ Vi(x) is the value of the game for player i;

@ J;(x) is the optimal impulse of player i in case of an immediate
intervention by player i himself;

@ M,;Vi(x) (resp. H;Vi(x)) is the value of the game for player i
in case of an immediate interv. by player i (resp. player j).

To help with the interpretation, we here recall the definitions:
Vi(x) = J'(x; o1, 03),

{6i(x)} = argmax; (Vi(x + 6) + ¢i(x,))

MVi(x) = Vi(x+ 61(x)) + 1 (x, 61(x)).

HiVi(x) = (x 4+ ; (x)) + ;i (x O; (x))



Let x be the current state of the process. Interpretation:

@ Vi(x) is the value of the game for player i;

@ J;(x) is the optimal impulse of player i in case of an immediate
intervention by player i himself;

@ M,;Vi(x) (resp. H;Vi(x)) is the value of the game for player i
in case of an immediate interv. by player i (resp. player j).

As a consequence, we (heuristically) argue that the Nash policy is:

player i intervenes if and only if M;Vi(x) = Vi(x)
and shifts the process from x to x + 0;(x).

Indeed, the verification theorem will make this guess rigorous. But
we first need to characterize V;, by means of suitable equations.
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Heuristics on V;. We consider the following quasi-variational
inequalities (QVI) for V4 and V5, where i,j € {1,2} and i # j:
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Heuristics on V;. We consider the following quasi-variational
inequalities (QVI) for V4 and V5, where i,j € {1,2} and i # j:

Vi = h;, in 08,

First equation. Standard terminal condition.
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Heuristics on V;. We consider the following quasi-variational
inequalities (QVI) for V4 and V5, where i,j € {1,2} and i # j:

Vi = h;, in 95,
Mj\/j—\/jgo, in S,

Second equation. We expect M;V; — V; <0 thanks to the
interpretation above.
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Heuristics on V;. We consider the following quasi-variational
inequalities (QVI) for V4 and V5, where i,j € {1,2} and i # j:

Vi = h;, in S,
M;V; - V; <0, in S,
MH;Vi— Vi =0, in {M;V;—V; =0},

Third equation. If player j intervenes (i.e. M;V; — V; =0), by the
definition of Nash equilibrium we expect that player i does not lose
anything: this is modelled by H;V; — V; = 0.
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Heuristics on V;. We consider the following quasi-variational
inequalities (QVI) for V4 and V5, where i,j € {1,2} and i # j:

Vi = h;, in 95,
M;V; - V; <0, in S,
HiVi—Vi=0, in {Mf\/j_\/jzo}7

max {AV; — p; Vi + f;, M;V; = Vi} =0, in {M;V; - V; <0},

where AV, = b- VV; +tr(c0tD?V;)/2 (infinitesimal generator).

Fourth equation. If player j does not intervene (i.e. M;V;—V,<0),
then V; satisfies the PDE of a standard one-player impulse problem.
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Heuristics on V;. We consider the following quasi-variational
inequalities (QVI) for V4 and V5, where i,j € {1,2} and i # j:

Vi = hj, in 8S,
M;V; = V; 0, D e
H;Vi—V; =0, in {M;V; —V; =0},
max {AV; — p;Vi + fi, M;V; = Vi} =0, in {M;V; - V; <0},

where AV, = b- VV; +tr(c0tD?V;)/2 (infinitesimal generator).

Statement and proof. We are now ready to state and prove the
verification theorem for our class of problems.
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Verification theorem

Let Vi, V, be functions from S to R satisfying some (very weak)
technical assumptions and such that:

- V; is a classical solution to (QVI),
-V, € C3(D;\ 0D;) N CY(D;) N C(S) and has polyn. growth,

where i,j € {1,2} and D; = {M;V; — V; < 0}. Let x € S and let
¢; = (D, 6i).
Assume that (7, ©3) is admissible; then,

(¢7,¢3) is a Nash equilibrium,
Vi(x) = Ji(x; %, @3), for i € {1,2}.
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Verification theorem (practical version)

Let Vi, V, be functions from S to R satisfying some (very weak)
technical assumptions and such that:

- V; is a classical solution to (QVI),
- Vi, € C¥(D;\ 0D;) N CY(D;) N C(S) and has polyn. growth,

where i,j € {1,2} and D; = {M;V; — V; < 0}. Then Vi, V, are
the value functions and a Nash equilibrium is as follows.

@ Player i intervenes if and only if X exits from {M;V;—V; <0}

@ When intervening, player i shifts X from the current state x to
the state x + d;(x), where 0;(x) is the (unique) maximizer of
§ — Vi(x+6) + i(x,6).




rificatic t orernr
3. Competition in retail energy markets

3. Competition in retail energy markets



3. Competition in retail energy markets

The problem. Let us come back to the initial problem.



1 onzero-sum impulsive ga

erification theorem

3. Competition in retail energy markets

The problem. Let us come back to the initial problem.
@ Two retailers buy energy at price S; = s + ut + oW, and
re-sell it at (piecewise constant) price Pi=p'+>__ _Jj k.

e Each intervention to adjust the price costs ¢; to player i. Also,
operational costs, quadratic w.r.t. his market share ®(P}—PY).

e Payoff: continuous gain (sale of energy), continuous spending
(operational costs), discrete spending (intervention costs).



The problem. Let us come back to the initial problem.

@ Two retailers buy energy at price S; = s + ut + oW, and
re-sell it at (piecewise constant) price Pi=p'+>__ _Jj k.

e Each intervention to adjust the price costs ¢; to player i. Also,
operational costs, quadratic w.r.t. his market share ®(P}—PY).

e Payoff: continuous gain (sale of energy), continuous spending
(operational costs), discrete spending (intervention costs).

Nonzero-sum impulsive game where player i wants to maximize
(three-dimensional problem)

E [/Ooe—f)f ((P;'—st) &(Pi—Pi) —g"¢(P{—P{)2> dt — Ze—/”nkc,-].
0

k>1




The problem. Let us come back to the initial problem.

@ Two retailers buy energy at price S; = s + ut + oW, and
re-sell it at (piecewise constant) price Pi=p'+>__ _Jj k.

e Each intervention to adjust the price costs ¢; to player i. Also,
operational costs, quadratic w.r.t. his market share ®(P}—PY).

e Payoff: continuous gain (sale of energy), continuous spending
(operational costs), discrete spending (intervention costs).

Nonzero-sum impulsive game where player i wants to maximize

(three-dimensional two-dimensional problem, with X' = P’ — 5)
b

oo . . . . . .
E[ /0 - (x; o(x; - xi) - Zo(x] - xg)2> dt — Ze—pf,-,kc,].

k>1




2. Verification theorem
3. Competition in retail energy markets

We now apply the verif. theorem to characterize the Nash equilibria.

@ Step 1: we solve the QVI problem to get a pair of (parametric)
candidates V4, V5 for the value functions Vq, V5.



We now apply the verif. theorem to characterize the Nash equilibria.

@ Step 1: we solve the QVI problem to get a pair of (parametric)
candidates V4, V5 for the value functions Vq, V5.

01(xi (), %) —a, inR
Vi(xi,x2) = o1 (x1,x2), in W,
P1 (xl,xz*(xl)) in B,
gag(x xz),xz) in R,
\72(X1,X2) = goz(xl x) in W,
@2 (x1,% (x1)) — c2, in B.




We now apply the verif. theorem to characterize the Nash equilibria.

@ Step 1: we solve the QVI problem to get a pair of (parametric)
candidates V4, V5 for the value functions Vq, V5.

01(xi (), %) —a, inR
\71(x1,xz) = gpl(xl,xQ), in W,
©»1 (xl,xz*(xl)) in B,
2 (X1 (x2), x2), in R,
\72(x1,xz) = g02(X1 x) in W,
goz(xl,xz (x1)) c2, in B.

R = {PI interv.} = {(xl,xz) D X1 ¢]gl(xz),)_<1(xz)[}

B = {P2 interv.} = {(thz) tx1 €]lxp (%), X1 (x2)[, x2 ¢]52(X1)7>‘<2(X1)[}
W = {no one int.} = {(x1,x2) : x1 €]x; (x2), X1 (x2)[, X2 €]x,(x1), %2 (x1)[}
x1 (x2) is a local max of 1(+, x2), x3(x1) is a local max of w2(x,-)

o1 is explicitly known (depends on some parameters)
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3. Competition in retail energy markets

We now apply the verif. theorem to characterize the Nash equilibria.

@ Step 1: we solve the QVI problem to get a pair of (parametric)
candidates V4, V5 for the value functions Vq, V5.

T2

P2 interv.

P1 interv. P1 interv.

Nobody intervenes

To(71)

P2 interv.

Z1(z2) 1
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3. Competition in retail energy markets

@ Step 2: we impose the regularity conditions required in the
verification theorem to such candidates. This corresponds to
11411 functional equations.



(32) (xiGe) ) =0,
01 (X1 (%), x2) = ¢1(x;(x), %) + a1,

(

©1 (Xl*(xz),xz) =1 (xl(xz),xz* (Xl(Xz))) + a,
P1 (Xf(Xz),Xz) =1 (X X2) + c1,
o1 (X1 (), x2) = ¢1 (XI(XQ) > (X1(X2))) +a,
®1 (X1,X2*(X1)) =1 (X1,£2(X1))»
e1(x1, 5 (x1)) = 1 (x1, %2 (x1)),

%f: (Xl(Xz),Xz) =0,

58 ) () ) = (52) (6 G ).

?9% (_1(Xz),X2) =0,

%%21 (_1(X2),X2) = (%L) (X1 (x2), Xz)

@ Step 2: we impose the regularity conditions required in the
verification theorem to such candidates. This corresponds to
11+11 functional equations. The equations for player 1:

x2 € R,

X2 € [XzA,XzB],
x2 € R\ [, x2],
X2 € [Xz ;ch]
x2 ER\ [x2 x5,
X1 G]X1,X1D[:

X1 G]XI 7X1C[7
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3. Competition in retail energy markets

@ Step 2: we impose the regularity conditions required in the
verification theorem to such candidates. This corresponds to

11411 functional equations.

@ Conclusions. If a sol. exists, the Nash equilibrium is as follows.

1. Player i intervenes if and on-
ly if the state variable (X}, X2)
touches the boundary of his con-
tinuation region |x;(X;), X;(X;)[.

2. When this happens, he moves
the state variable he contro]s, i.e.
{, to the new state x(X7).

Z2

P1 interv.

P2 interv.

Nobody intervenes

P2 interv.

P1 interv.

(1)




Conclusions



1. Nonzero-sum impulsive games )

1.2 Our model: strategies — impulse controls — controlled process

1.1 Naturally arise in energy finance but never studied
1.3 Payoff: running cost, intervention costs, intervention gains, terminal cost J

2. Verification theorem J

2.2 Fundamental assumptions: QVI problem + regularity conditions

2.1 Sufficient conditions to characterize the value functions
2.3 Key-points for the QVI problem: operators M;V; and H,V; J

3. Competition in retail energy markets J

3.2 Step 1: looking for a solution to the QVI problem

3.1 Two competitive retailers have do decide their price management policy
3.3 Step 2: applying the regularity condition to the candidate in Step 1 J




Thank you!
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Appendix



Competition in retail markets: complete solution



We are going to apply the verification theorem to try and
characterize the value functions and the Nash equilibria.

@ Step 1: we solve the QVI problem to get a pair of (parametric)
candidates V4, V, for the value functions Vq, V5.

@ Step 2: we impose the regularity conditions required in the
verification theorem to such candidates.



We are going to apply the verification theorem to try and
characterize the value functions and the Nash equilibria.

@ Step 1: we solve the QVI problem to get a pair of (parametric)
candidates V4, V, for the value functions Vq, V5.

@ Step 2: we impose the regularity conditions required in the
verification theorem to such candidates.

Step 1: building a candidate. As anticipated, we start by solving
the QVI problem. First, we outline some empirical arguments to
guess the form of the regions where each player intervenes.

Recall the practical meaning of the new variables: X/ = P! — S, is
the net gain from the sale of energy at time t.



Heuristically, player 1 intervenes iff his income X} exits from a
suitable interval |x; (X2), X1 (X2)[ (clearly depending on X?):

{P1 interv.} = {(x1, %) : x1 €]x1(x), %1 (x2)[}-



Heuristically, player 1 intervenes iff his income X} exits from a
suitable interval |x; (X2), X1 (X2)[ (clearly depending on X?):

{P1 interv.} = {(x1, %) : x1 €]x1(x), %1 (x2)[}-

Similar argument for player 2, but we exclude the points where
player 1 intervenes (he has priority in case of contemporary interv.):

{P2 interv.} = {(x1,%) : x2 ¢]x5(x1), %2(x1)[} \ {P1 interv.}
= {(q. %) X €lxi (), 20e)l, % Elx(a), %0x)[}-



Heuristically, player 1 intervenes iff his income X} exits from a
suitable interval |x; (X2), X1 (X2)[ (clearly depending on X?):

{P1 interv.} = {(x1, %) : x1 €]x1(x), %1 (x2)[}-

Similar argument for player 2, but we exclude the points where
player 1 intervenes (he has priority in case of contemporary interv.):

{P2 interv.} = {(x1,%) : x2 ¢]x5(x x1)[} \ {P1 interv.}
= {0, x2) 1 €lx(x )7 ( 2l e Fxo(a), % 0a)l}-

Finally, the region where no one intervenes is

{no one int.} = ({P1 interv.} U {P2 interv.})"

= {(x, %) : x1 €]x1(3), (), x €]xp(x1), X2 (x1)[}-



Nobody intervenes




1. Nonzero-

5

3. Competition in reta

T2

P2 interv.

P1 interv. P1 interv.

Nobody intervenes

Zo (1)

P2 interv.

zy (w2) Z1(w2) x1

R = {P1 interv.} = {(x1,x2) : x1 ¢]x;(x2), %1 (x2)[}



1. Nonzero-
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3. Competition in reta

T2

P2 interv.

P1 interv. P1 interv.

Nobody intervenes

Zo (1)

P2 interv.

zy (w2) Z1(w2) x1

B = {P2 interv.} = {(x1,x2) : x1 €]x;(x2), X1 (x2)[, x2 ¢]x,(x1), %2 (x1)[}



1. Nonzero-
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3. Competition in reta

T2

P2 interv.

P1 interv. P1 interv.

Nobody intervenes

Zo (1)

P2 interv.

zy (w2) Z1(w2) x1

W = {no one int.} = {(x1,%) : x1 €]x;(x2),X1(x2)[, x2 €]x5(x1), %2 (x1)[}



Let us now face the QVI problem. The equations read

H;iVi— V=0, in {Mj - V; =0},
max{.A\/;—p\/;+ﬁ,M;\/;—\/;}:O, in {M;V; -V, <0}



Let us now face the QVI problem. The equations read

HiV;—V; =0, in {./\/lj -V, =
max{.A\/,-—p\/;—G—ﬁ',M;\/;—\/;}:O, in {M;V; - V; <0}

We can rewrite them as (where ¢; is a sol. to AV; — pV; + f; = 0):
M;Vi, in {M;V; - V; =0},

Vi={ i, in {M;Vi— Vi <0, MV, -V, <0},
HiVi, in MV — V; =0},



Let us now face the QVI problem. The equations read

HiV;—V; =0, in {./\/lj -V, =
max{A\/;—p\/;—G—ﬁ,M;\/;—\/;}:O, in {M;V; - V; <0}

We can rewrite them as (where ¢; is a sol. to AV; — pV; + f; = 0):
M;Vi, in {M;V; - V; =0},

Vi={ i, in {M;Vi— Vi <0, MV, -V, <0},
HiVi, in MV — V; =0},

By the practical interpretation of the regions, we get

Mi1Vi, in {P1 interv.}, HoVo, in {P1 interv.},
Vi =< 1, in {no one int.}, Vo = ¢ 7, in {no one int.},
H1Vi, in {P2interv.}, MoV, in {P2 interv.}.



Up to now, we simply re-wrote the equations (generic argument). Recall:

MiVy, in {PI interv.}, HoVo, in {PI interv.},
Vi =< o1, in {no one int.}, Vo= ¢ o, in {no one int.},
H1Vi, in {P2 interv.}, My Vs, in {P2 interv.}.



Up to now, we simply re-wrote the equations (generic argument). Recall:

MiVy, in {PI interv.}, HoVo, in {PI interv.},
Vi =< o1, in {no one int.}, Vo= ¢ o, in {no one int.},
H1Vi, in {P2 interv.}, My Vs, in {P2 interv.}.

We need to estimate: the regions, the functions (;, the operators.



Up to now, we simply re-wrote the equations (generic argument). Recall:

MiVy, in {PI interv.}, HoVo, in {PI interv.},
Vi =< o1, in {no one int.}, Vo= ¢ o, in {no one int.},
H1Vi, in {P2 interv.}, My Vs, in {P2 interv.}.

We need to estimate: the regions, the functions (;, the operators.

@ The three regions. Already done!



Up to now, we simply re-wrote the equations (generic argument). Recall:

MiVy, in {PI interv.}, HoVo, in {PI interv.},
Vi =< o1, in {no one int.}, Vo= ¢ o, in {no one int.},
H1Vi, in {P2 interv.}, My Vs, in {P2 interv.}.

We need to estimate: the regions, the functions ;, the operators.

@ The three regions. v’



Up to now, we simply re-wrote the equations (generic argument). Recall:

MiVy, in {PI interv.}, HoVo, in {PI interv.},
Vi =< o1, in {no one int.}, Vo= ¢ o, in {no one int.},
H1Vi, in {P2 interv.}, My Vs, in {P2 interv.}.

We need to estimate: the regions, the functions ;, the operators.
@ The three regions. v’

@ The functions ;. By definition, ¢; is a solution to

1
_M(an + (9X2)§D/ + 502(6& + 8X2)290i — ppi+ f; =0.

Idea: change of variable y3 = x; + xo and y» = x; — x», so that the
PDE becomes an easily solvable second-order linear ODE.



Up to now, we simply re-wrote the equations (generic argument). Recall:

MiVy, in {PI interv.}, HoVo, in {PI interv.},
Vi =< o1, in {no one int.}, Vo= ¢ o, in {no one int.},
H1Vi, in {P2 interv.}, My Vs, in {P2 interv.}.

We need to estimate: the regions, the functions ;, the operators.
@ The three regions. v’

@ The functions ;. v’



Up to now, we simply re-wrote the equations (generic argument). Recall:

MiVy, in {PI interv.}, HoVo, in {PI interv.},
Vi =< o1, in {no one int.}, Vo= ¢ o, in {no one int.},
H1Vi, in {P2 interv.}, My Vs, in {P2 interv.}.

We need to estimate: the regions, the functions ;, the operators.
@ The three regions. v’
@ The functions ;. v’
@ The operators M;, H;. Heuristic estimates show that
MiVi(x, %) = o1 (x2), x2) — e, HaVa(xe, xe) = 1 (x1, %5 (x1)),
Mo Vz(X1,X2) = p2 (X1,X§(X1)) —c, Ho V2(X1,X2) = p2 (Xf(X2)7X2)7

where x;*(x2) is a local maximum of 1(+,x2) and x3(x1) is a local
maximum of o (x1, -).



Up to now, we simply re-wrote the equations (generic argument). Recall:

MiVy, in {PI interv.}, HoVo, in {PI interv.},
Vi =< o1, in {no one int.}, Vo= ¢ o, in {no one int.},
H1Vi, in {P2 interv.}, My Vs, in {P2 interv.}.

We need to estimate: the regions, the functions ;, the operators.
@ The three regions. v’
@ The functions ;. v’
@ The operators M;, H;. v



Up to now, we simply re-wrote the equations (generic argument). Recall:

MiVy, in {PI interv.}, HoVo, in {PI interv.},
Vi =< o1, in {no one int.}, Vo= ¢ o, in {no one int.},
H1Vi, in {P2 interv.}, My Vs, in {P2 interv.}.

We need to estimate: the regions, the functions ;, the operators.
@ The three regions. v’
@ The functions ;. v’
@ The operators M;, H;. v

Finally, this leads to the following (class of) candidates.






01 (xf(xz),XQ) — ¢, inR,
\71(X1,X2) =< 1 (xl,xz), in W
01 (xl,xg(xl)), in B
gpz(xf(xz),xz), in R
Vo(x1, x0) = P2(x1, %), in W
(pg(xl,xf(xl)) — ¢, inB

R = {PI interv.} = {(x1,x2) : x1 &]x;(x2), %1 (x2)[}
B = {P2 interv.} = {(x1,x2) : x1 €]x;(x2), %1 ()], x2 ¢]x,(x1), %2 (x1)[}
W = {no one int.} = {(x1,%) : x1 €]x;(x2), X1 (x2)[, x2 €]x5(x1), %2(x1)[}

x1 (x2) is a local max of ¢1(-, %) and x3 (x1) is a local max of ya(x1, )

an explicit formula for ¢y is available



01 (xf(xz),XQ) — ¢, inR,
Vi(x1,x2) = < o1 (x1,%), in W,
01 (xl,xé‘(xl)), in B,
02 (5 (x2), x2), in R,
\72(X17X2) = @2(X1,X2), in W,
(pg(xl,xf(xl)) — ¢, inB.

R = {P1 interv.} = {(x1,x2) : x1 &]x; (x2), %1 (x2)[}
B = {P2 interv.} = {(x1,x2) : x1 €]x;(x2), %1 (x)[, x2 ¢]x,(x1), % (x1)[}
W = {no one int.} = {(x1,x) : x1 €]x; (%), %1 (x2)[, x2 €]x,(x1), % (x1)[}

x1 (x2) is a local max of v1(+,x2) and x; (x1) is a local max of ¢ (x1, )
an explicit formula for 1 is available

(Notice: some parameters/function still to be determined!)



Step 2: conditions on the coefficients. We now list the
conditions that V4, V5 have to satisfy (basically, this translates into
equations on the coefficients). We focus on V4, symmetric
arguments for V5.



Step 2: conditions on the coefficients. We now list the
conditions that V4, V5 have to satisfy (basically, this translates into
equations on the coefficients). We focus on V4, symmetric
arguments for V5.

First, recall that x;"(x2) is a local maximum of ¢1(-, x2). This
corresponds to the f.o.c. (g—‘ﬁll) (Xik(XQ),XQ) =0, for each x» € R.



Step 2: conditions on the coefficients. We now list the
conditions that V4, V5 have to satisfy (basically, this translates into
equations on the coefficients). We focus on V4, symmetric
arguments for V5.

First, recall that x;"(x2) is a local maximum of ¢1(-, x2). This

corresponds to the f.o.c. (?)—fll) (Xf(Xg),Xg) =0, for each x» € R.

Moreover, recall from the verification theorem that we need
Vi € C3(Dy\ &Dy) N CY(Dy) N C(R?),

where D; = {M,\N/, — Vi< 0}. As Vi is piecewise defined and each
part is C*°, we need to set some C%-pasting and C!-pasting
conditions. In detail, this corresponds to 10 equations.



T2

P2 interv.

P1 interv. P1 interv.

Nobody intervenes

P2 interv.

24 (22)) Z1(z2) 1

We set a CO-pasting condition in: the two vertical lines, AD, BC.
We set a Cl-pasting condition in: AB, DC.



To sum up, we need to solve the following system.






In short, if one finds a solution to the 11+11 equations, the
candidate built above satisfies all the assumptions of the
verification theorem and we can characterize the value function and

the Nash equilibria.

Solution to the 11411 equations: work in progress...



A simple example: complete solution



Appendix: a simple example. Let us consider the following
one-dimensional nonzero-sum impulsive game:

JH(x: 1, 02) =Ex [/ efps(Xs—51)3d5—Z efpﬁ’kcﬁ-z em“@],
0

k>1 k>1
J2(X; 1, p2) =Ex [/ e (s —Xs)3ds—z e*’””cl—i—z epTl’kC2:|.
Y k>1 k>1

4

where s; < s, and, in case of no interventions, we have dXs=odW;.



3. Competition in reta

Appendix: a simple example. Let us consider the following
one-dimensional nonzero-sum impulsive game:

J (x; 1, o) =Ex [/ efps(Xsfsl)B‘dsz e*pT‘*kclJrZ e’”z’ch],
0

k>1 k>1
J2(X; 1, p2) =Ex [/ e (s 7X5)3dsfz e*pTzvkclJrZ ep“’kcz].
Y k>1 k>1

4

where s; < s, and, in case of no interventions, we have dXs=odW;.

Possible economic interpretation as follows. Let X be the exchange
rate between two currencies. The corresponding countries have
different targets: player 1 needs a high value, player 2 needs a low
rate. Both the players can intervene and move the rate.



We now use the verification theorem, with the following procedure.

@ Step 1: we solve the QVI problem to get a pair of (parametric)
candidates V4, V5 for the value functions V¢, V5.

@ Step 2: we impose the regularity conditions required in the
verification theorem to such candidates.



We now use the verification theorem, with the following procedure.

@ Step 1: we solve the QVI problem to get a pair of (parametric)
candidates V4, V, for the value functions V4, V5.

@ Step 2: we impose the regularity conditions required in the
verification theorem to such candidates.

Step 1: building a candidate. As player 1 needs a high rate, we
assume his intervention region to be in the form |—o0,x;]. Similarly,
we expect the intervention region of player 2 to be in the form
[X2, +00[. The real line is, heuristically, divided into three intervals:

| — o0, x1] = {M1 V1 — V4 = 0}, where player 1 intervenes,
|x1, X[ = {M1V4— V41 <0, M3 V5— V5 <0}, where no one intervenes,
[X%2, +oo[= {M2 V2 — Vo = 0}, where player 2 intervenes.



The equations in the QVI problem here read

HiVi—Vi=0, in {M;V; —V; =0},
max {AV; — pVi + fi, M;Vi = Vi} =0, in {M;V; — V; <0}



The equations in the QVI problem here read

H;Vi— V=0, in {M;V; -V, =

maX{A\/i—P\/i+ﬁ,Mi\/i— Vi} =0, in {M;V; -V, <

which we can rewrite as (where ¢; is a sol. to AV; — pV; +f; = 0):
M;Vi, in {M;V; = V; =0},

Vi=q ¢is in {M;V; = V; <0, M;V; — V; <0},
HiVi, in {M;V; = V; =0},



The equations in the QVI problem here read

H;Vi— V=0, in {M;V; -V, =

maX{A\/i—P\/i+ﬁ,Mi\/i— Vi} =0, in {M;V; -V, <

which we can rewrite as (where ¢; is a sol. to AV; — pV; +f; = 0):
M;Vi, in {M;V; = V; =0},

Vi={ i in {M;Vi— Vi <0, MV, -V, <0},
HiVi, in MV — V; =0},

Finally, by the previous partition of the real line, we get
M1V17 in ] _OO,)_(]_], M2V27 in [)?27—"_00[’

Vi =1 1, in |x1, %], Vo =< o, in |x1, %],
HiVa, in [X2, +o0f, HaVa, in | —o00,X].



By heuristic arguments we can estimate M;V; and #H;V;. This
leads to the following (class of) candidates, where x;" is a local
maximum of ; in the interval |x1, X[

01(xf) —a, ifxe]—o0,x],
Vi(x) = { ¢1(x), if x € %1, %],
01(3) + @, if x € [x, +o1],
gDz(Xf)-l—Cz, ifXG]—OO,)_q],
Va(x) = { ¢a(x), if x € |x1, %,
w2(x3) — a1, if x € [Xo, +o0.




By heuristic arguments we can estimate M;V; and #H;V;. This
leads to the following (class of) candidates, where x;" is a local
maximum of ; in the interval |x1, X[

©1 Xik)—Cl, ifXG]—OO,)_q],
V1(X) =94 Y1 X), if x ])?1,)?2[,
01(3) + ¢, if x € [x, +o9],
)

Va(x) = § ¢a(x)

o if x € ])_(1,)_(2[,
©2 X2) —q, if x € [)_(27+OO['

(
(
(
©a(x7) + 2, if x €] —o0,x1]
(
(

Notice that some free parameters are present at the moment. We
now set such parameters by imposing the regularity conditions.



Step 2: conditions on the coefficients. Recall from the verification
theorem that we need

V; € C3(D; \ dD;) N CH(D;) N C(S),
where D; = {M,\7, — Vi< 0}. In our case, it writes
Vi € c2(] ~ o0, 5[ U ];1,;2[) N CH(] = o0, %[) N C(R),

Vs € c2(]>-<1,>-<2[ U ])'(2,—1—00[) N C (151, ool ) N C(R).



Step 2: conditions on the coefficients. Recall from the verification
theorem that we need

V; € C3(D; \ dD;) N CH(D;) N C(S),

where D; = {M,\7, — Vi< 0}. In our case, it writes
Vi € c2(] ~ o0, 5[ U ];1,22[) N CH(] = o0, %[) N C(R),
Vs € c2(]>-<1,>-<2[ U ])'(2,—1—00[) N C (151, ool ) N C(R).
By definition, we know that

Vi, Vs € C°°<] — o0, 5[ U IR, %o U ]>-<2,+oo[).



Step 2: conditions on the coefficients. Recall from the verification
theorem that we need

Vi € C3(D;\ D;) N CY(D;) N C(S),
where D; = {M,\7, — Vi< 0}. In our case, it writes
Vi € C2(] ~ o0, 5[ U ])?1,)?2[) N CH(] = o0, %[) N C(R),
Vs € c2(]>-<1,>-<2[ U ])'(2,—1—00[) N C (151, ool ) N C(R).
By definition, we know that
Vi, Vs € C°°<] — o0, 5[ U IR, %o U ]>‘<2,+oo[).

Hence, we just have to set six conditions:
o As for V: C%pasting in X1, % and Cl-pasting in Xi.
@ As for \72: CO—pasting in X1,X»> and Cl—pasting in Xo.



;

O1(xF)=0 and ¢{(x7) <0, (optimality of x;)
¢1(x) =0, (C*-pasting in %)
e1(%1) = p109) — a1, (CC-pasting in %)
v1(%) = v1(3) + 2, (CC-pasting in %)
05(x3) =0 and ¢5(x3) <0, (optimality of x5)
©5(%) =0, (C*-pasting in %)
p2(X1) = p2(q) + 2, (CO-pasting in %)
p2(%2) = pa(x3) — a1, (CP-pasting in %)

with X; < x* < Xo, for i € {1,2}. As 1, @2 are solutions to linear

second-order ODEs, we have @1 = 9@’1411”412 and o, = (pézl,Azz,

with Aj € R.



To sum up, we have to solve the following system of equations:

;

O1(xF)=0 and ¢f(x) <0, (optimality of x)
¢1(x) =0, (C-pasting in %)
e1(%1) = p109) — a1, (CP-pasting in %)
p1(%2) = p1(3) + c2, (CC-pasting in %)
05(x3) =0 and ¢5(x3) <0, (optimality of x;)
@s(%) =0, (C*-pasting in %)
p2(X1) = p2(q) + 2, (CO-pasting in %)
p2(%2) = pa(x3) — a1, (CC-pasting in %)

with X; < x* < Xo, for i € {1,2}. As 1, @2 are solutions to linear

second-order ODEs, we have @1 = @’1411”412 and o, = (pgzl,Azz,

with Ajj € R. Then, we have 8 equations



;

() =0 and ¢{(x) <0, (optimality of x;)
¢1(x) =0, (C*-pasting in %)
e1(%1) = p109) — a1, (CC-pasting in %)
v1(%) = v1(3) + 2, (CC-pasting in %)
05(x3) =0 and ¢5(x3) <0, (optimality of x5)
©5(%) =0, (C*-pasting in %)
p2(X1) = p2(q) + 2, (CO-pasting in %)
p2(%2) = pa(x3) — a1, (CP-pasting in %)

with X; < x* < Xo, for i € {1,2}. As 1, @2 are solutions to linear

second-order ODEs, we have @1 = ¢{‘11’A12 and o, = (}0§21,A22,

with Aj; € R. Then, we have 8 equations and 8 parameters.



1. Nonze

3. Competition in reta

Conclusion. In short, provided that a solution to such system exists,
we have two well-defined candidates V4, V, for the value functions
Vi, V. We can now apply the verification theorem.

Under some minor assumptions, assume that the eight parameters
Xi, X", Ajj solve the system above. Then, the value functions are

cpl(xf)fcl, ifXE]*OO,)_(l],
Vi(x) = < p1(x), if x € X1, %],
01(3) + &, if x € [X, +00],

Va(x) = { @a(x) if x € ]x1, %],

(

(

wa(x7) + @, if x€]—o00,x]
(x),

©a(x3) — c1, if x € [Xp, +00].




3. Competition in reta

Conclusion. In short, provided that a solution to such system exists,
we have two well-defined candidates V4, V, for the value functions
Vi, V. We can now apply the verification theorem.

Under some minor assumptions, assume that the eight parameters
Xi, X", Ajj solve the system above. Then, the value functions are

o1(x7) —a, ifxe]—oo0,x]
Vi(x) = < p1(x), if x € ]x1, %],
01(3) + &, if x € [X, +00],
wa(x7) + @, if x€]—o00,x]
Va(x) = < pa(x), if x € X1, %],
©a(x3) — c1, if x € [Xp, +00].
Moreover, the Nash equilibria are characterized as follows.

@ Player / intervenes if and only if the process hits X;.
@ When intervening, player i shifts the process to the state x;*.




Competition in retail markets:
a simpler one-player model



One player: the model. We consider an energy retailer who buys
energy in the wholesale market and re-sells it to final consumers, in
each t € [0, ool.
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@ The price management policy is determined by the sequence
u = {(7k,0x) }x (impulse control), where 7 are the
intervention times and §, are the corresponding shifts.



One player: the model. We consider an energy retailer who buys
energy in the wholesale market and re-sells it to final consumers, in
each t € [0, ool.

@ He buys energy at wholesale price S; = s+ ut + o W,.

@ He re-sells the energy to his customers. By contract, the final
price is a piecewise constant process: Py = p + Z‘Fk<t k-

@ The price management policy is determined by the sequence
u = {(7k,0x) }x (impulse control), where 7 are the
intervention times and §, are the corresponding shifts.

@ Intervening has a (fixed) cost, denoted c. The retailer also
faces operational costs, quadratic w.r.t. his market share ®;.

@ The player’s market share depends on X; = P; — S;: in our
model, ®; = ®(X;) = min { 1, max{0, —1/A(X; — A)} }



The retailer buys/re-sells energy (— continuous-time revenue),

oo
/ e X, 0(X,)
0



The retailer buys/re-sells energy (— continuous-time revenue),
pays quadratic operational costs (— continuous-time spending),

/0 Tees <X5¢(XS) — gqﬂ(xs)) ds
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pays quadratic operational costs (— continuous-time spending),
and faces fixed costs when intervening (— discrete-time spending).
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The retailer buys/re-sells energy (— continuous-time revenue),
pays quadratic operational costs (— continuous-time spending),
and faces fixed costs when intervening (— discrete-time spending).

One player: the problem. The retailer wants to maximize his
income, that is

E[ /0 T <x5¢(xs)—gq>2(xs)> ds — ;eprkc].

This is a standard stochastic control problem with impulse controls.
Our goal is to characterize the value function and the optimal price
management policy.



One player: characterizing V. If V: R — R

e is a solution to max { AV — pV — f, MV — V} =0,
e is bounded and in C2(R\ {MV — V < 0})n CY(R),
where MV =sups V(- +0) — c = max V — ¢, then V is the value

function and we can characterize the optimal control (standard
verification theorem).



One player: characterizing V. If V: R — R

e is a solution to max { AV — pV — f, MV — V} =0,
e is bounded and in C2(R\ {MV — V < 0})n CY(R),
where MV =sups V(- +0) — c = max V — ¢, then V is the value

function and we can characterize the optimal control (standard
verification theorem).

The procedure is as follows.

o First, we get a candidate by solving the PDE above (the
candidate depends on some parameters) .

@ Then, we impose the regularity conditions (this corresponds to
algebraic equations on the parameters).

Finally, we get the following result.



The value function is

o= {rant et
PA1,A2 (X ) — ¢ In R\]K,X[,

where pa, 4, is an explicit function and the five parameters
(A1, Az, x, X, x*) are the unique solution to a suitable algebraic
system of equations. Moreover, the optimal control is as follows:

the retailer intervenes if and only if the process X
exits from ]x, X[ and shifts the process to x*.




3. Competition in reta

The value function is

V(X) _ SDAl,Az (X)7 in ]K?)_(L
PALA; (X*) — ¢, in R\]Ka)_([a
where pa, 4, is an explicit function and the five parameters

(A1, Az, x, X, x*) are the unique solution to a suitable algebraic
system of equations. Moreover, the optimal control is as follows:

the retailer intervenes if and only if the process X
exits from ]x, X[ and shifts the process to x*.

Here, the interaction between opposing retailers is not directly
modelled, but only implicitly considered (the player's market share
decreases as his income rises) — we introduce a second player.
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