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A practical example. In energy markets, retailers buy energy in
the wholesale market and re-sell it to �nal customers.

The �nal prices are piecewise constant processes, due to binding
clauses in the contracts. Hence, each retailer has to decide
when and how to change the price he asks to his customers.

High �nal prices mean high incomes, but few customers; conversely,
low �nal prices imply high market share, but low unitary incomes.
Moreover, the market share also depends on the opponent's choices.

Each retailer wants to maximize his incomes: we model this
competition as a two-player stochastic di�erential game and
look for Nash equilibria in the retailers' price management policy.
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The model. We consider a continuous-time model, t ∈ [0,+∞[,
and assume that two retailers (players) are present in the market.

They buy energy at wholesale price St = s + µt + σWt .

They re-sell the energy to their customers. The �nal price
asked by player i is piecewise constant: P i

t = pi +
∑

τi,k≤t δi ,k .

The price management policy of player i is determined by the
sequence ui = {(τi ,k , δi ,k)}k (impulse control), where τi ,k are
the intervention times and δi ,k are the corresponding shifts.

Intervening has a (�xed) cost for player i , denoted ci . He also
faces operational costs, quadratic w.r.t. his market share Φi .

The players' market share depends on the di�erence between
the prices they ask: Φi

t = Φ(P i
t − P j

t ) ∈ [0, 1], for suitable Φ.
In our model, Φ(η) = min

{
1, max{0, −(η −∆)/(2∆)}

}
.
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So, player i buys and re-sells energy (→ continuous-time revenue),

pays quadratic operational costs (→ continuous-time spending),
and faces �xed costs when intervening (→ discrete-time spending).

The problem. We look for Nash equilibria, in order to maximize
the players' incomes. In particular, player i wants to maximize

E
[

∫ ∞
0

e−ρt

(

(P i
t − St) Φ

(
P i
t − P j

t

)

− bi
2

Φ
(
P i
t − P j

t

)2)
dt −

∑
k≥1

e−ρτi,k ci

]
.
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This is a two-player nonzero-sum game with impulse controls.
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This is a two-player nonzero-sum game with impulse controls.

To the best of our knowledge, no references are present in the
literature about this class of problems.
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Two-pl. zero-sum game
Two-pl. nonzero-sum game
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Indeed, related works only address the following problems.

Stopping time Impulse control

One-pl. control problem Several authors
Two-pl. zero-sum game
Two-pl. nonzero-sum game

Several authors: the player chooses τ so as to maximize

E
[ ∫ τ

0

e−ρt f (Xt)dt + e−ρτh(Xτ )

]
.
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One-pl. control problem Several authors Several authors
Two-pl. zero-sum game Friedman
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Several authors: the player chooses u = {(τk , δk)}k to maximize

E
[ ∫ ∞

0

e−ρt f (Xt)dt +
∑
k

e−ρτkφ
(
X(τk )− , δk
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.
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Indeed, related works only address the following problems.

Stopping time Impulse control

One-pl. control problem Several authors Several authors
Two-pl. zero-sum game Friedman Cosso
Two-pl. nonzero-sum game Bensoussan-Friedman

Cosso: the players choose ui = {(τ ik , δik)}k so as to maximize

E
[ ∫ ∞

0

e−ρt f (Xt)dt +
∑
k

e−ρτi,kφ
(
X(τi,k )− , δi ,k

)
+
∑
k

e−ρτj,kψ
(
X(τj,k )− , δj ,k

)]
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Indeed, related works only address the following problems.

Stopping time Impulse control

One-pl. control problem Several authors Several authors
Two-pl. zero-sum game Friedman Cosso
Two-pl. nonzero-sum game Bensoussan-Friedman ???

Open problem: the players choose ui = {(τ ik , δik)}k to maximize

E
[ ∫ ∞
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Stopping time Impulse control
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Our goal. To study nonzero-sum stochastic di�erential games with
impulse controls.
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Indeed, related works only address the following problems.

Stopping time Impulse control

One-pl. control problem Several authors Several authors
Two-pl. zero-sum game Friedman Cosso
Two-pl. nonzero-sum game Bensoussan-Friedman ???

Our goal. To study nonzero-sum stochastic di�erential games with
impulse controls.

1. Rigorous formalization of the problem.

2. Veri�cation theorem.

3. Application to competition in retail energy markets.
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The idea. Our problems have the following key-points.

The players can a�ect a process, modelled by a SDE, by
discrete-time interventions (impulse controls).

Any intervention by one of the players corresponds to
a cost for the intervening player and a gain for the opponent.

Player i ∈ {1, 2} wants to maximize the following payo�
(running payo�, intervention costs and gains, terminal cost):

Ex

[ ∫ τS

0

e−ρi s fi (Xs)ds +
∑
k

e−ρiτi,kφi
(
X(τi,k )− , δi,k

)
+
∑
k

e−ρiτj,kψi

(
X(τj,k )− , δj,k

)
+ e−ρiτShi

(
X(τS )−

)
1{τS<+∞}

]
.

We look for Nash equilibria.

We now provide a rigorous formulation for such problems.
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The process. The underlying process, when none of the player
intervenes, is modelled by dYs = b(Ys)ds + σ(Ys)dWs ∈ Rd . The
game ends at τS , the exit time of Y from a �xed subset S ⊆ Rn.

Interventions of the players. When player i ∈ {1, 2} decides to
intervene with impulse δ, the process is shifted from state y to state
Γi (y , δ). Moreover, player i pays a penalty φi (x , δ) (interven. cost),
whereas his opponent player j earns ψj(x , δ) (intervention gains).

Impulse controls. The action of player i is modelled by a
sequence (impulse control) in the form ui = {(τi ,k , δi ,k)}k≥1,
where {τi ,k}k are increasing stopping times (the intervention times)
and {δi ,k}k are random variables (the corresponding impulses).
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Strategies. The behaviour of the players, modelled by impulse
controls, is driven by strategies.

A strategy for player i ∈ {1, 2} is a couple ϕi = (Ai , ξi ), where Ai

is a �xed subset of Rd and ξi is a continuous function.

Once the couples ϕi = (Ai , ξi ) and a starting point x have been
chosen, a couple of impulse controls and a controlled process
X = X x ;ϕ1,ϕ2 are uniquely de�ned by the following procedure:

- player i intervenes if and only if the process exits from Ai ,

in which case the impulse is given by ξi (y), where y is the state;

- if both the players want to act, player 1 has the priority.
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Nash equilibria. Let ϕi = (Ai , ξi ) be the strategies and x be the
initial state. Player i aims at maximising the following functional
(running payo�, intervention costs, intervention gains, �nal cost):

J i (x ;ϕ1, ϕ2) := Ex

[ ∫ τS

0

e−ρi s fi (Xs)ds +
∑
k

e−ρiτi,kφi

(
X(τi,k )− , δi ,k

)
+
∑
k

e−ρiτj,kψi

(
X(τj,k )− , δj ,k

)
+ e−ρiτShi

(
X(τS )−

)
1{τS<+∞}

]
.

We say that a couple of strategies (ϕ∗
1
, ϕ∗

2
) is a Nash equilibrium if

V 1(x) := J1(x ;ϕ∗1, ϕ
∗
2) ≥ J1(x ;ϕ1, ϕ

∗
2), ∀ϕ1,

V 2(x) := J2(x ;ϕ∗1, ϕ
∗
2) ≥ J2(x ;ϕ∗1, ϕ2), ∀ϕ2.
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Our goal. To prove a veri�cation theorem: if two functions are
regular enough and satisfy suitable equations, they are actually the
value funct. of the game and we can characterize Nash strategies.

First of all, some heuristics about the appropriate equations for
V1,V2 and the Nash equilibria. To simplify, let Γi (x , δ) = x + δ.

Heuristics on ϕ∗i . Assume we know Vi and that there exists δi s.t.

{δi (x)} = argmaxδ
(
Vi

(
x + δ

)
+ φi (x , δ)

)
,

for each i ∈{1, 2}, x ∈S . Then, for each i , j ∈{1, 2}, i 6= j , x ∈S , let

MiVi (x) = Vi

(
x + δi (x)

)
+ φi

(
x , δi (x)

)
,

HiVi (x) = Vi

(
x + δj(x)

)
+ ψi

(
x , δj(x)

)
.
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Let x be the current state of the process. Interpretation:

Vi (x) is the value of the game for player i ;

δi (x) is the optimal impulse of player i in case of an immediate
intervention by player i himself;

MiVi (x) (resp. HiVi (x)) is the value of the game for player i
in case of an immediate interv. by player i (resp. player j).
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Let x be the current state of the process. Interpretation:

Vi (x) is the value of the game for player i ;

δi (x) is the optimal impulse of player i in case of an immediate
intervention by player i himself;

MiVi (x) (resp. HiVi (x)) is the value of the game for player i
in case of an immediate interv. by player i (resp. player j).

To help with the interpretation, we here recall the de�nitions:

Vi (x) = J i (x ;ϕ∗
1 , ϕ

∗
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Let x be the current state of the process. Interpretation:

Vi (x) is the value of the game for player i ;

δi (x) is the optimal impulse of player i in case of an immediate
intervention by player i himself;

MiVi (x) (resp. HiVi (x)) is the value of the game for player i
in case of an immediate interv. by player i (resp. player j).

As a consequence, we (heuristically) argue that the Nash policy is:

player i intervenes if and only ifMiVi (x) = Vi (x)

and shifts the process from x to x + δi (x).

Indeed, the veri�cation theorem will make this guess rigorous. But
we �rst need to characterize Vi , by means of suitable equations.
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Heuristics on Vi . We consider the following quasi-variational
inequalities (QVI) for V1 and V2, where i , j ∈ {1, 2} and i 6= j :

Vi = hi , in ∂S ,

MjVj − Vj ≤ 0, in S ,

HiVi − Vi = 0, in {MjVj − Vj = 0},
max

{
AVi − ρiVi + fi ,MiVi − Vi} = 0, in {MjVj − Vj < 0},

where AVi = b · ∇Vi + tr(σσtD2Vi )/2 (in�nitesimal generator).
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Heuristics on Vi . We consider the following quasi-variational
inequalities (QVI) for V1 and V2, where i , j ∈ {1, 2} and i 6= j :

Vi = hi , in ∂S ,

MjVj − Vj ≤ 0, in S ,

HiVi − Vi = 0, in {MjVj − Vj = 0},
max

{
AVi − ρiVi + fi ,MiVi − Vi} = 0, in {MjVj − Vj < 0},

where AVi = b · ∇Vi + tr(σσtD2Vi )/2 (in�nitesimal generator).

First equation. Standard terminal condition.
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Heuristics on Vi . We consider the following quasi-variational
inequalities (QVI) for V1 and V2, where i , j ∈ {1, 2} and i 6= j :

Vi = hi , in ∂S ,

MjVj − Vj ≤ 0, in S ,

HiVi − Vi = 0, in {MjVj − Vj = 0},
max

{
AVi − ρiVi + fi ,MiVi − Vi} = 0, in {MjVj − Vj < 0},

where AVi = b · ∇Vi + tr(σσtD2Vi )/2 (in�nitesimal generator).

Second equation. We expectMjVj − Vj ≤ 0 thanks to the
interpretation above.
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Heuristics on Vi . We consider the following quasi-variational
inequalities (QVI) for V1 and V2, where i , j ∈ {1, 2} and i 6= j :

Vi = hi , in ∂S ,

MjVj − Vj ≤ 0, in S ,

HiVi − Vi = 0, in {MjVj − Vj = 0},

max
{
AVi − ρiVi + fi ,MiVi − Vi} = 0, in {MjVj − Vj < 0},

where AVi = b · ∇Vi + tr(σσtD2Vi )/2 (in�nitesimal generator).

Third equation. If player j intervenes (i.e.MjVj − Vj = 0), by the
de�nition of Nash equilibrium we expect that player i does not lose
anything: this is modelled by HiVi − Vi = 0.
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Heuristics on Vi . We consider the following quasi-variational
inequalities (QVI) for V1 and V2, where i , j ∈ {1, 2} and i 6= j :

Vi = hi , in ∂S ,

MjVj − Vj ≤ 0, in S ,

HiVi − Vi = 0, in {MjVj − Vj = 0},
max

{
AVi − ρiVi + fi ,MiVi − Vi} = 0, in {MjVj − Vj < 0},

where AVi = b · ∇Vi + tr(σσtD2Vi )/2 (in�nitesimal generator).

Fourth equation. If player j does not intervene (i.e.MjVj−Vj<0),
then Vi satis�es the PDE of a standard one-player impulse problem.
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Heuristics on Vi . We consider the following quasi-variational
inequalities (QVI) for V1 and V2, where i , j ∈ {1, 2} and i 6= j :

Vi = hi , in ∂S ,

MjVj − Vj ≤ 0, in S ,

HiVi − Vi = 0, in {MjVj − Vj = 0},
max

{
AVi − ρiVi + fi ,MiVi − Vi} = 0, in {MjVj − Vj < 0},

where AVi = b · ∇Vi + tr(σσtD2Vi )/2 (in�nitesimal generator).

Statement and proof. We are now ready to state and prove the
veri�cation theorem for our class of problems.
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Veri�cation theorem

(practical version)

Let V1,V2 be functions from S to R satisfying some (very weak)
technical assumptions and such that:

- Vi is a classical solution to (QVI),

- Vi ∈ C 2(Dj \ ∂Di ) ∩ C 1(Dj) ∩ C (S) and has polyn. growth,

where i , j ∈ {1, 2} and Di = {MiVi − Vi < 0}. Let x ∈ S and let

ϕ∗i = (Di , δi ).

Assume that (ϕ∗
1
, ϕ∗

2
) is admissible; then,

(ϕ∗
1
, ϕ∗

2
) is a Nash equilibrium,

Vi (x) = J i (x ;ϕ∗
1
, ϕ∗

2
), for i ∈ {1, 2}.
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Veri�cation theorem (practical version)

Let V1,V2 be functions from S to R satisfying some (very weak)
technical assumptions and such that:

- Vi is a classical solution to (QVI),

- Vi ∈ C 2(Dj \ ∂Di ) ∩ C 1(Dj) ∩ C (S) and has polyn. growth,

where i , j ∈ {1, 2} and Di = {MiVi − Vi < 0}. Then V1,V2 are
the value functions and a Nash equilibrium is as follows.

Player i intervenes if and only if X exits from {MiVi−Vi<0}.

When intervening, player i shifts X from the current state x to
the state x + δi (x), where δi (x) is the (unique) maximizer of
δ 7→ Vi

(
x + δ

)
+ φi (x , δ).
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The problem. Let us come back to the initial problem.

Two retailers buy energy at price St = s + µt + σWt and
re-sell it at (piecewise constant) price P i

t =pi +
∑

τi,k≤tδi ,k .

Each intervention to adjust the price costs ci to player i . Also,
operational costs, quadratic w.r.t. his market share Φ(P i

t−P
j
t ).

Payo�: continuous gain (sale of energy), continuous spending
(operational costs), discrete spending (intervention costs).
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The problem. Let us come back to the initial problem.

Two retailers buy energy at price St = s + µt + σWt and
re-sell it at (piecewise constant) price P i

t =pi +
∑

τi,k≤tδi ,k .

Each intervention to adjust the price costs ci to player i . Also,
operational costs, quadratic w.r.t. his market share Φ(P i

t−P
j
t ).

Payo�: continuous gain (sale of energy), continuous spending
(operational costs), discrete spending (intervention costs).

Nonzero-sum impulsive game where player i wants to maximize
(three-dimensional problem)

E
[ ∫ ∞

0

e−ρt
((

P i
t−St

)
Φ
(
P i
t−P

j
t

)
−bi

2
Φ
(
P i
t−P

j
t

)2)
dt −

∑
k≥1

e−ρτi,k ci

]
.
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The problem. Let us come back to the initial problem.

Two retailers buy energy at price St = s + µt + σWt and
re-sell it at (piecewise constant) price P i

t =pi +
∑

τi,k≤tδi ,k .

Each intervention to adjust the price costs ci to player i . Also,
operational costs, quadratic w.r.t. his market share Φ(P i

t−P
j
t ).

Payo�: continuous gain (sale of energy), continuous spending
(operational costs), discrete spending (intervention costs).

Nonzero-sum impulsive game where player i wants to maximize
(three-dimensional two-dimensional problem, with X i = P i − S)

E
[ ∫ ∞

0

e−ρt
(
X i
t Φ
(
X i
t − X j

t

)
− bi

2
Φ
(
X i
t − X j

t

)2)
dt −

∑
k≥1

e−ρτi,k ci

]
.
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We now apply the verif. theorem to characterize the Nash equilibria.

Step 1: we solve the QVI problem to get a pair of (parametric)
candidates Ṽ1, Ṽ2 for the value functions V1,V2.

Ṽ1(x1, x2) =


ϕ1

(
x∗
1 (x2), x2

)
− c1, in R,

ϕ1

(
x1, x2

)
, in W ,

ϕ1

(
x1, x

∗
2 (x1)

)
, in B,

Ṽ2(x1, x2) =


ϕ2

(
x∗
1 (x2), x2

)
, in R,

ϕ2

(
x1, x2

)
, in W ,

ϕ2

(
x1, x

∗
2 (x1)

)
− c2, in B.

R = {P1 interv.} =
{

(x1, x2) : x1 /∈]x1(x2), x̄1(x2)[
}

B = {P2 interv.} =
{

(x1, x2) : x1 ∈]x1(x2), x̄1(x2)[, x2 /∈]x2(x1), x̄2(x1)[
}

W = {no one int.} =
{

(x1, x2) : x1∈]x1(x2), x̄1(x2)[, x2∈]x2(x1), x̄2(x1)[
}

x∗
1 (x2) is a local max of ϕ1(·, x2), x∗

2 (x1) is a local max of ϕ2(x1, ·)
ϕ1 is explicitly known (depends on some parameters)
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We now apply the verif. theorem to characterize the Nash equilibria.
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Step 2: we impose the regularity conditions required in the
veri�cation theorem to such candidates. This corresponds to
11+11 functional equations.
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Step 2: we impose the regularity conditions required in the
veri�cation theorem to such candidates. This corresponds to
11+11 functional equations.

Conclusions. If a sol. exists, the Nash equilibrium is as follows.

1. Player i intervenes if and on-
ly if the state variable (X 1

t ,X
2
t )

touches the boundary of his con-
tinuation region ]x i (Xj), x̄i (Xj)[.

2. When this happens, he moves
the state variable he controls, i.e.
X i
t , to the new state x∗i (X j

t ). x1(x2) x1(x2)

x2(x1)

x2(x1)

Nobody intervenes

P2 interv.

P2 interv.

P1 interv. P1 interv.

A

B C

D

x1

x2
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1. Nonzero-sum impulsive games

1.1 Naturally arise in energy �nance but never studied
1.2 Our model: strategies → impulse controls → controlled process
1.3 Payo�: running cost, intervention costs, intervention gains, terminal cost

2. Veri�cation theorem

2.1 Su�cient conditions to characterize the value functions
2.2 Fundamental assumptions: QVI problem + regularity conditions
2.3 Key-points for the QVI problem: operatorsMiVi and HiVi

3. Competition in retail energy markets

3.1 Two competitive retailers have do decide their price management policy
3.2 Step 1: looking for a solution to the QVI problem
3.3 Step 2: applying the regularity condition to the candidate in Step 1
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Competition in retail markets: complete solution
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We are going to apply the veri�cation theorem to try and
characterize the value functions and the Nash equilibria.

Step 1: we solve the QVI problem to get a pair of (parametric)
candidates Ṽ1, Ṽ2 for the value functions V1,V2.

Step 2: we impose the regularity conditions required in the
veri�cation theorem to such candidates.

Step 1: building a candidate. As anticipated, we start by solving
the QVI problem. First, we outline some empirical arguments to
guess the form of the regions where each player intervenes.

Recall the practical meaning of the new variables: X i
t = P i

t − St is
the net gain from the sale of energy at time t.
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Heuristically, player 1 intervenes i� his income X 1
t exits from a

suitable interval ]x1(X 2
t ), x̄1(X 2

t )[ (clearly depending on X 2
t ):

{P1 interv.} =
{

(x1, x2) : x1 /∈]x1(x2), x̄1(x2)[
}
.

Similar argument for player 2, but we exclude the points where
player 1 intervenes (he has priority in case of contemporary interv.):

{P2 interv.} =
{

(x1, x2) : x2 /∈]x2(x1), x̄2(x1)[
}
\ {P1 interv.}

=
{

(x1, x2) : x1 ∈]x1(x2), x̄1(x2)[, x2 /∈]x2(x1), x̄2(x1)[
}
.

Finally, the region where no one intervenes is

{no one int.} =
(
{P1 interv.} ∪ {P2 interv.}

)c
=
{

(x1, x2) : x1 ∈]x1(x2), x̄1(x2)[, x2 ∈]x2(x1), x̄2(x1)[
}
.
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R = {P1 interv.} =
{

(x1, x2) : x1 /∈]x1(x2), x̄1(x2)[
}
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Let us now face the QVI problem. The equations read

HiVi − Vi = 0, in {MjVj − Vj = 0},
max

{
AVi − ρVi + fi ,MiVi − Vi} = 0, in {MjVj − Vj < 0}.

We can rewrite them as (where ϕi is a sol. to AVi − ρVi + fi = 0):

Vi =


MiVi , in {MiVi − Vi = 0},
ϕi , in {MiVi − Vi < 0,MjVj − Vj < 0},
HiVi , in {MjVj − Vj = 0}.

By the practical interpretation of the regions, we get

V1 =


M1V1, in {P1 interv.},
ϕ1, in {no one int.},
H1Vi , in {P2 interv.},

V2 =


H2V2, in {P1 interv.},
ϕ2, in {no one int.},
M2V2, in {P2 interv.}.
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Up to now, we simply re-wrote the equations (generic argument). Recall:

V1 =


M1V1, in {P1 interv.},
ϕ1, in {no one int.},
H1Vi , in {P2 interv.},

V2 =


H2V2, in {P1 interv.},
ϕ2, in {no one int.},
M2V2, in {P2 interv.}.

We need to estimate: the regions, the functions ϕi , the operators.

The three regions. Already done!
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The functions ϕi . By de�nition, ϕi is a solution to

−µ(∂x1 + ∂x2)ϕi +
1

2
σ2(∂x1 + ∂x2)2ϕi − ρϕi + fi = 0.

Idea: change of variable y1 = x1 + x2 and y2 = x1 − x2, so that the
PDE becomes an easily solvable second-order linear ODE.
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The three regions. X

The functions ϕi . X

The operatorsMi ,Hi . Heuristic estimates show that

M1V1(x1, x2) = ϕ1

(
x∗
1

(x2), x2
)
− c1, H1V1(x1, x2) = ϕ1

(
x1, x

∗
2

(x1)
)
,

M2V2(x1, x2) = ϕ2

(
x1, x

∗
2

(x1)
)
− c2, H2V2(x1, x2) = ϕ2

(
x∗
1

(x2), x2
)
,

where x∗
1

(x2) is a local maximum of ϕ1(·, x2) and x∗
2

(x1) is a local
maximum of ϕ2(x1, ·).
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Ṽ1(x1, x2) =


ϕ1

(
x∗
1

(x2), x2
)
− c1, in R ,

ϕ1

(
x1, x2

)
, in W ,

ϕ1

(
x1, x

∗
2

(x1)
)
, in B ,

Ṽ2(x1, x2) =


ϕ2

(
x∗
1

(x2), x2
)
, in R ,

ϕ2

(
x1, x2

)
, in W ,

ϕ2

(
x1, x

∗
2

(x1)
)
− c2, in B .

R = {P1 interv.} =
{

(x1, x2) : x1 /∈]x1(x2), x̄1(x2)[
}

B = {P2 interv.} =
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(x1, x2) : x1 ∈]x1(x2), x̄1(x2)[, x2 /∈]x2(x1), x̄2(x1)[
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W = {no one int.} =
{

(x1, x2) : x1 ∈]x1(x2), x̄1(x2)[, x2 ∈]x2(x1), x̄2(x1)[
}

x∗
1 (x2) is a local max of ϕ1(·, x2) and x∗

2 (x1) is a local max of ϕ2(x1, ·)

an explicit formula for ϕ1 is available

(Notice: some parameters/function still to be determined!)
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Ṽ1(x1, x2) =


ϕ1

(
x∗
1

(x2), x2
)
− c1, in R ,

ϕ1

(
x1, x2

)
, in W ,

ϕ1

(
x1, x

∗
2

(x1)
)
, in B ,
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Step 2: conditions on the coe�cients. We now list the
conditions that Ṽ1, Ṽ2 have to satisfy (basically, this translates into
equations on the coe�cients). We focus on Ṽ1, symmetric
arguments for Ṽ2.

First, recall that x∗
1

(x2) is a local maximum of ϕ1(·, x2). This

corresponds to the f.o.c.
(
∂ϕ1
∂x1

)(
x∗
1

(x2), x2
)

= 0, for each x2 ∈ R.

Moreover, recall from the veri�cation theorem that we need

Ṽ1 ∈ C 2(D2 \ ∂D1) ∩ C 1(D2) ∩ C (R2),

where Di = {Mi Ṽi − Ṽi < 0}. As Ṽ1 is piecewise de�ned and each
part is C∞, we need to set some C 0-pasting and C 1-pasting
conditions. In detail, this corresponds to 10 equations.
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Ṽ1 ∈ C 2(D2 \ ∂D1) ∩ C 1(D2) ∩ C (R2),
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arguments for Ṽ2.
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x1(x2) x1(x2)

x2(x1)

x2(x1)

Nobody intervenes

P2 interv.

P2 interv.

P1 interv. P1 interv.

A

B C

D

x1

x2

We set a C 0-pasting condition in: the two vertical lines, AD, BC.
We set a C 1-pasting condition in: AB, DC.
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To sum up, we need to solve the following system.



(
∂ϕ1
∂x1

)(
x∗
1

(x2), x2
)

= 0, x2 ∈ R,
ϕ1

(
x∗
1

(x2), x2
)

= ϕ1

(
x
1
(x2), x2

)
+ c1, x2 ∈

[
xA
2
, xB

2

]
,

ϕ1

(
x∗
1

(x2), x2
)

= ϕ1

(
x
1
(x2), x∗

2

(
x
1
(x2)

))
+ c1, x2 ∈ R \

[
xA
2
, xB

2

]
,

ϕ1

(
x∗
1

(x2), x2
)

= ϕ1

(
x̄1(x2), x2

)
+ c1, x2 ∈

[
xD
2
, xC

2

]
,

ϕ1

(
x∗
1

(x2), x2
)

= ϕ1

(
x̄1(x2), x∗

2

(
x̄1(x2)

))
+ c1, x2 ∈ R \

[
xD
2
, xC

2

]
,

ϕ1

(
x1, x

∗
2

(x1)
)

= ϕ1

(
x1, x2(x1)

)
, x1 ∈

]
xA
1
, xD

1

[
,

ϕ1

(
x1, x

∗
2

(x1)
)

= ϕ1

(
x1, x̄2(x1)

)
, x1 ∈

]
xB
1
, xC

1

[
,(

∂ϕ1
∂x1

)(
x
1
(x2), x2

)
= 0, x2 ∈

[
xA
2
, xB

2

]
,(

∂ϕ1
∂x2

)(
x
1
(x2), x2

)
=
(
∂ϕ1
∂x2

)(
x∗
1

(x2), x2
)
, x2 ∈

[
xA
2
, xB

2

]
,(

∂ϕ1
∂x1

)(
x̄1(x2), x2

)
= 0, x2 ∈

[
xD
2
, xC

2

]
,(

∂ϕ1
∂x2

)(
x̄1(x2), x2

)
=
(
∂ϕ1
∂x2

)(
x∗
1

(x2), x2
)
, x2 ∈

[
xD
2
, xC

2

]
.
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In short, if one �nds a solution to the 11+11 equations, the
candidate built above satis�es all the assumptions of the
veri�cation theorem and we can characterize the value function and
the Nash equilibria.

Solution to the 11+11 equations: work in progress...
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A simple example: complete solution
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Appendix: a simple example. Let us consider the following
one-dimensional nonzero-sum impulsive game:

J1(x ;ϕ1, ϕ2)=Ex

[∫ ∞
0

e−ρs(Xs−s1)3ds−
∑
k≥1

e−ρτ1,k c1+
∑
k≥1

e−ρτ2,k c2

]
,

J2(x ;ϕ1, ϕ2)=Ex

[∫ ∞
0

e−ρs(s2−Xs)3ds−
∑
k≥1

e−ρτ2,k c1+
∑
k≥1

e−ρτ1,k c2

]
.

where s1<s2 and, in case of no interventions, we have dXs =σdWs .

Possible economic interpretation as follows. Let X be the exchange
rate between two currencies. The corresponding countries have
di�erent targets: player 1 needs a high value, player 2 needs a low
rate. Both the players can intervene and move the rate.
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We now use the veri�cation theorem, with the following procedure.

Step 1: we solve the QVI problem to get a pair of (parametric)
candidates Ṽ1, Ṽ2 for the value functions V1,V2.

Step 2: we impose the regularity conditions required in the
veri�cation theorem to such candidates.

Step 1: building a candidate. As player 1 needs a high rate, we
assume his intervention region to be in the form ]−∞,x̄1]. Similarly,
we expect the intervention region of player 2 to be in the form
[x̄2,+∞[. The real line is, heuristically, divided into three intervals:

]−∞, x̄1] = {M1V1 − V1 = 0}, where player 1 intervenes,

]x̄1, x̄2[ = {M1V1−V1<0,M2V2−V2<0}, where no one intervenes,

[x̄2,+∞[ = {M2V2 − V2 = 0}, where player 2 intervenes.
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The equations in the QVI problem here read

HiVi − Vi = 0, in {MjVj − Vj = 0},
max

{
AVi − ρVi + fi ,MiVi − Vi} = 0, in {MjVj − Vj < 0},

which we can rewrite as (where ϕi is a sol. to AVi − ρVi + fi = 0):

Vi =


MiVi , in {MiVi − Vi = 0},
ϕi , in {MiVi − Vi < 0,MjVj − Vj < 0},
HiVi , in {MjVj − Vj = 0}.

Finally, by the previous partition of the real line, we get

V1 =


M1V1, in ]−∞, x̄1],

ϕ1, in ]x̄1, x̄2[,

H1V1, in [x̄2,+∞[,

V2 =


M2V2, in [x̄2,+∞[,

ϕ2, in ]x̄1, x̄2[,

H2V2, in ]−∞, x̄1].
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By heuristic arguments we can estimateMiVi and HiVi . This
leads to the following (class of) candidates, where x∗i is a local
maximum of ϕi in the interval ]x̄1, x̄2[:

Ṽ1(x) =


ϕ1(x∗

1
)− c1, if x ∈ ]−∞, x̄1],

ϕ1(x), if x ∈ ]x̄1, x̄2[,

ϕ1(x∗
2

) + c2, if x ∈ [x̄2,+∞[,

Ṽ2(x) =


ϕ2(x∗

1
) + c2, if x ∈ ]−∞, x̄1],

ϕ2(x), if x ∈ ]x̄1, x̄2[,

ϕ2(x∗
2

)− c1, if x ∈ [x̄2,+∞[.

Notice that some free parameters are present at the moment. We
now set such parameters by imposing the regularity conditions.
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Step 2: conditions on the coe�cients. Recall from the veri�cation
theorem that we need

Ṽi ∈ C 2(Dj \ ∂Di ) ∩ C 1(Dj) ∩ C (S),

where Di = {Mi Ṽi − Ṽi < 0}. In our case, it writes

Ṽ1 ∈ C 2

(
]−∞, x̄1[ ∪ ]x̄1, x̄2[

)
∩ C 1

(
]−∞, x̄2[

)
∩ C (R),

Ṽ2 ∈ C 2

(
]x̄1, x̄2[ ∪ ]x̄2,+∞[

)
∩ C 1

(
]x̄1,+∞[

)
∩ C (R).

By de�nition, we know that

Ṽ1, Ṽ2 ∈ C∞
(

]−∞, x̄1[ ∪ ]x̄1, x̄2[ ∪ ]x̄2,+∞[
)
.

Hence, we just have to set six conditions:

As for Ṽ1: C
0-pasting in x̄1, x̄2 and C 1-pasting in x̄1.

As for Ṽ2: C
0-pasting in x̄1, x̄2 and C 1-pasting in x̄2.
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Ṽ1, Ṽ2 ∈ C∞
(

]−∞, x̄1[ ∪ ]x̄1, x̄2[ ∪ ]x̄2,+∞[
)
.

Hence, we just have to set six conditions:

As for Ṽ1: C
0-pasting in x̄1, x̄2 and C 1-pasting in x̄1.

As for Ṽ2: C
0-pasting in x̄1, x̄2 and C 1-pasting in x̄2.
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To sum up, we have to solve the following system of equations:
ϕ′
1
(x∗

1
) = 0 and ϕ′′

1
(x∗

1
) ≤ 0, (optimality of x∗

1
)

ϕ′
1
(x̄1) = 0, (C 1-pasting in x̄1)

ϕ1(x̄1) = ϕ1(x∗
1

)− c1, (C 0-pasting in x̄1)

ϕ1(x̄2) = ϕ1(x∗
2

) + c2, (C 0-pasting in x̄2)
ϕ′
2
(x∗

2
) = 0 and ϕ′′

2
(x∗

2
) ≤ 0, (optimality of x∗

2
)

ϕ′
2
(x̄2) = 0, (C 1-pasting in x̄2)

ϕ2(x̄1) = ϕ2(x∗
1

) + c2, (C 0-pasting in x̄1)

ϕ2(x̄2) = ϕ2(x∗
2

)− c1, (C 0-pasting in x̄2)

with x̄1 < x∗i < x̄2, for i ∈ {1, 2}. As ϕ1, ϕ2 are solutions to linear

second-order ODEs, we have ϕ1 = ϕA11,A12

1
and ϕ2 = ϕA21,A22

2
,

with Aij ∈ R.
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Conclusion. In short, provided that a solution to such system exists,
we have two well-de�ned candidates Ṽ1, Ṽ2 for the value functions
V1,V2. We can now apply the veri�cation theorem.

Proposition

Under some minor assumptions, assume that the eight parameters
x̄i , x

∗
i ,Aij solve the system above. Then, the value functions are

V1(x) =


ϕ1(x∗

1
)− c1, if x ∈ ]−∞, x̄1],

ϕ1(x), if x ∈ ]x̄1, x̄2[,

ϕ1(x∗
2

) + c2, if x ∈ [x̄2,+∞[,

V2(x) =


ϕ2(x∗

1
) + c2, if x ∈ ]−∞, x̄1],

ϕ2(x), if x ∈ ]x̄1, x̄2[,

ϕ2(x∗
2

)− c1, if x ∈ [x̄2,+∞[.

Moreover, the Nash equilibria are characterized as follows.

Player i intervenes if and only if the process hits x̄i .

When intervening, player i shifts the process to the state x∗i .
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Competition in retail markets:
a simpler one-player model
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One player: the model. We consider an energy retailer who buys
energy in the wholesale market and re-sells it to �nal consumers, in
each t ∈ [0,∞[.

He buys energy at wholesale price St = s + µt + σWt .

He re-sells the energy to his customers. By contract, the �nal
price is a piecewise constant process: Pt = p +

∑
τk≤t δk .

The price management policy is determined by the sequence
u = {(τk , δk)}k (impulse control), where τk are the
intervention times and δk are the corresponding shifts.

Intervening has a (�xed) cost, denoted c . The retailer also
faces operational costs, quadratic w.r.t. his market share Φt .

The player's market share depends on Xt = Pt − St : in our
model, Φt = Φ(Xt) = min

{
1, max{0, −1/∆(Xt −∆)}

}
.
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The retailer buys/re-sells energy (→ continuous-time revenue),

pays quadratic operational costs (→ continuous-time spending),
and faces �xed costs when intervening (→ discrete-time spending).

One player: the problem. The retailer wants to maximize his
income, that is

E
[

∫ ∞
0

e−ρs

(

XsΦ
(
Xs

)

− b

2
Φ2
(
Xs

))
ds −

∑
k≥1

e−ρτk c

]
.
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This is a standard stochastic control problem with impulse controls.
Our goal is to characterize the value function and the optimal price
management policy.
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One player: characterizing V . If V : R→ R

is a solution to max
{
AV − ρV − f ,MV − V

}
= 0,

is bounded and in C 2(R \ {MV − V < 0}) ∩ C 1(R),

whereMV = supδ V (·+ δ)− c = maxV − c , then V is the value
function and we can characterize the optimal control (standard
veri�cation theorem).

The procedure is as follows.

First, we get a candidate by solving the PDE above (the
candidate depends on some parameters) .

Then, we impose the regularity conditions (this corresponds to
algebraic equations on the parameters).

Finally, we get the following result.
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Proposition

The value function is

V (x) =

{
ϕA1,A2

(x), in ]x , x̄ [,

ϕA1,A2
(x∗)− c , in R\]x , x̄ [,

where ϕA1,A2
is an explicit function and the �ve parameters

(A1,A2, x , x̄ , x
∗) are the unique solution to a suitable algebraic

system of equations. Moreover, the optimal control is as follows:

the retailer intervenes if and only if the process X
exits from ]x , x̄ [ and shifts the process to x∗.
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V (x) =

{
ϕA1,A2

(x), in ]x , x̄ [,

ϕA1,A2
(x∗)− c , in R\]x , x̄ [,

where ϕA1,A2
is an explicit function and the �ve parameters

(A1,A2, x , x̄ , x
∗) are the unique solution to a suitable algebraic

system of equations. Moreover, the optimal control is as follows:

the retailer intervenes if and only if the process X
exits from ]x , x̄ [ and shifts the process to x∗.

Here, the interaction between opposing retailers is not directly
modelled, but only implicitly considered (the player's market share
decreases as his income rises) −→ we introduce a second player.
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