Boundary crossing problems
 Applications to Risk Management

Pierre-Olivier Goffard

Université Libre de Bruxelles

```
pierre-olivier.goffard@ulb.ac.be
```

University du Maine, Le Mans
June 29, 2016

Insurance Risk Model

Consider a non-life insurance company.

- Up to some time horizon t :
\hookrightarrow The number of claims is modeled through a counting process $\{N(t) ; t \geq 0\}$,
\hookrightarrow The claim sizes are a sequence of non-negative, i.i.d. random variables $\left\{U_{k} ; k \in \mathbb{N}\right\}$,
\hookrightarrow Initial capital of amount $u \geq 0$,
\hookrightarrow Premium are collected linearly in time at a rate $c \geq 0$.
- The insurance risk reserve process is given by

$$
R(t)=u+c t-\sum_{k=1}^{N(t)} U_{k}
$$

Finite time ruin probability in the insurance ruin model

The time to ruin is defined as

$$
\tau_{u}=\inf \{t \geq 0 ; R(t)<0\}
$$

and the finite time ruin probability

$$
\psi(u, t)=\mathbb{P}\left(\tau_{u} \leq t\right)
$$

- What's the point of computing such a quantity?

Theorem

Finite time non-ruin probability
If

- $u=0$,
- $U_{k}=1$ a.s.,
- $\{N(t) ; t \geq 0\}$ is a homogenous Poisson process
\hookrightarrow The risk process is simply given by $R(t)=c t-N(t)$, for $t \geq 0$
and we have

$$
\mathbb{P}\left(\tau_{0}>t\right)=\mathbb{E}\left[\left(1-\frac{N(t)}{c t}\right)_{+}\right]
$$

About the Poisson process

- A homogeneous poisson process is characterized by its inter arrival times $\left\{\Delta T_{k} ; k \geq 1\right\}$
\hookrightarrow i.i.d. exponentially distributed with parameter λ
- Interesting property upon the jump times $\left\{T_{n}=\sum_{k=1}^{n} \Delta T_{k} ; n \geq 1\right\}$

$$
\left[T_{1}, \ldots, T_{n} \mid N(t)=n\right] \stackrel{\mathcal{D}}{=}\left[\mathcal{U}_{1 ; n}(0, t), \ldots, \mathcal{U}_{n ; n}(0, t)\right]
$$

\hookrightarrow Noter au tableau.

Appell sequence of polynomials

- $U=\left\{u_{k} ; k \geq 1\right\}$ is a sequence of real number.
- $\left\{A_{k}(x \mid U) ; k \geq 1\right\}$ is a sequence of polynomials such that

$$
\begin{aligned}
A_{0}(x \mid U) & =1 \\
A_{n}^{\prime}(x \mid U) & =n \times A_{n-1}(x \mid U) \text { for } n>1 \\
A_{n}\left(u_{n} \mid U\right) & =0
\end{aligned}
$$

Therefore

$$
A_{n}(x \mid U)=n \int_{U_{n}}^{x} A_{n-1}\left(y_{n} \mid U\right) \mathrm{d} y_{n}
$$

and by induction we have the integral representation

$$
A_{n}(x \mid U)=n!\int_{u_{n}}^{x} \int_{u_{n-1}}^{y_{n}} \ldots \int_{u_{1}}^{y_{2}} \mathrm{~d} y_{1} \ldots \mathrm{~d} y_{n} .
$$

Probabilistic interpretation of Appell polynomials

Because of

$$
\begin{equation*}
f_{U_{1: n}, \ldots, U_{n: n}}\left(u_{1}, \ldots, u_{n}\right)=n!\mathbb{I}_{\left\{0<u_{1} \leq \ldots \leq u_{n} \leq 1\right\}} \tag{1}
\end{equation*}
$$

where $U_{1: n}, \ldots, U_{n: n}$ are the order statistics of a random sample of size n uniformly distributed.

- Up to some ordering conditions over U,

$$
\begin{aligned}
A_{n}(x \mid U) & =\mathbb{P}\left(U_{1: n} \geq u_{1}, \ldots, U_{n: n} \geq u_{n}, \text { and } U_{n: n} \leq x\right) \\
A_{n}(1 \mid U) & =\mathbb{P}\left(U_{1: n} \geq u_{1}, \ldots, U_{n: n} \geq u_{n}\right)
\end{aligned}
$$

\hookrightarrow Noter au tableau.

Useful Identities

Let us have $b U=\left\{b u_{k} ; k \geq 1\right\}$, for $b \neq 0$, then

$$
A_{n}(x \mid b U)=b^{n} A_{n}\left(\left.\frac{x}{b} \right\rvert\, U\right) \text { \#Property } 1 .
$$

And

$$
A_{n}(x \mid 1, \ldots, n)=x^{n-1}(x-n) \text { \#Property2 }
$$

These identities follow from induction based on the previous integral representation.
\hookrightarrow Noter au tableau.

Conditionning on the values of $N(\mathrm{t})$

$$
\begin{gathered}
\tau_{0}=\inf \{t \geq 0 ; c t-N(t) \leq 0\}=\inf \{t \geq 0 ; N(t) \geq c t\} \\
\left\{\tau_{0} \geq t\right\}=\bigcup_{n=0}^{+\infty}\left\{\tau_{0} \geq t\right\} \cap\{N(t)=n\}
\end{gathered}
$$

that is equivalent to

$$
\left\{\tau_{0} \geq t\right\}=\bigcup_{n=0}^{\lfloor c t\rfloor} \bigcap_{k=1}^{n}\left\{T_{k} \geq \frac{k}{c}\right\} \cap\{N(t)=n\}
$$

Applying Bayes Theorem,

$$
\mathbb{P}\left(\tau_{0}>t\right)=\sum_{n=0}^{\lfloor c t\rfloor} \mathbb{P}\left(\left.\bigcap_{k=1}^{n}\left\{T_{k} \geq \frac{k}{c}\right\} \right\rvert\, N(t)=n\right) \mathbb{P}(N(t)=n) .
$$

Dealing with conditionnal probability, the link toward Appell Polynomials

$$
\begin{aligned}
\mathbb{P}\left(\left.\bigcap_{k=1}^{n}\left\{T_{k} \geq \frac{k}{c}\right\} \right\rvert\, N(t)=n\right) & =\mathbb{P}\left(\bigcap_{k=1}^{n}\left\{U_{k: n}(0, t) \geq \frac{k}{c}\right\}\right) \\
& =\mathbb{P}\left(\bigcap_{k=1}^{n}\left\{U_{k: n} \geq \frac{k}{c t}\right\}\right) \\
& =A_{n}\left(1 \left\lvert\, \frac{1}{c t}\right., \ldots, \frac{n}{c t}\right)
\end{aligned}
$$

Taking advantage of the algebraic properties of Appell Polynomials

$$
\begin{aligned}
A_{n}\left(1 \left\lvert\, \frac{1}{c t}\right., \ldots, \frac{n}{c t}\right) & =\left(\frac{1}{c t}\right)^{n} A_{n}(c t \mid 1, \ldots, n) \text { \#Property1 } \\
& =\left(\frac{1}{c t}\right)^{n}(c t-n)(c t)^{n-1} \text { \#Property2 } \\
& =\left(1-\frac{n}{c t}\right)
\end{aligned}
$$

Reinjection leads to

$$
\begin{aligned}
\mathbb{P}\left(\tau_{0}>t\right) & =\sum_{n=0}^{\lfloor c t\rfloor}\left(1-\frac{n}{c t}\right) \mathbb{P}(N(t)=n) \\
& =\mathbb{E}\left\{\left[1-\frac{N(t)}{c t}\right]_{+}\right\}
\end{aligned}
$$

To go Further

- Extension to Order Statistic Point Processes
\hookrightarrow Mixed Poisson process with a time transformation
\hookrightarrow Mixed Sample process
- Algrebraic properties when U is a sequence of partial sums $\left\{\sum_{k=1}^{n} U_{k} ; n \geq 1\right\}$ where the U_{k} 's are i.i.d.

Dual Risk Model

Consider an investment company,

- Up to some time horizon s :
\hookrightarrow The number of capital gains is modeled through a counting process $\{M(s) ; s \geq 0\}$,
\hookrightarrow The capital gains are a sequence of non-negative, i.i.d. random variables $\left\{V_{k} ; k \in \mathbb{N}\right\}$,
\hookrightarrow Initial capital of amount $v \geq 0$,
\hookrightarrow Operational expenses entails a linearly decreasing financial reserve in time at a rate $d \geq 0$.
- The dual risk reserve process is given by

$$
U(s)=v-d s+\sum_{k=1}^{M(s)} V_{k}
$$

