Reflected stochastic differential equations driven by G-Brownian motion

SOUMANA HIMA Abdoulaye

UNIVERSITE DE RENNES 1
june 2016

Plan

- G-expectation
- Reflected G-Brownian motion
- Reflected G-SDEs

Sublinear expectation

- Let Ω be a given set and \mathcal{H} be a vector lattice on Ω. A sublinear expectation is a functional $\widetilde{\mathbb{E}}: \mathcal{H} \rightarrow \mathbb{R}$ satisfying the following properties:

Sublinear expectation

- Let Ω be a given set and \mathcal{H} be a vector lattice on Ω. A sublinear expectation is a functional $\widetilde{\mathbb{E}}: \mathcal{H} \rightarrow \mathbb{R}$ satisfying the following properties:
- Monotonicity: if $X, Y \in \mathcal{H}$ with $X \geq Y$ then $\widetilde{\mathbb{E}}[X] \geq \widetilde{\mathbb{E}}[Y]$.

Sublinear expectation

- Let Ω be a given set and \mathcal{H} be a vector lattice on Ω. A sublinear expectation is a functional $\widetilde{\mathbb{E}}: \mathcal{H} \rightarrow \mathbb{R}$ satisfying the following properties:
- Monotonicity: if $X, Y \in \mathcal{H}$ with $X \geq Y$ then $\widetilde{\mathbb{E}}[X] \geq \widetilde{\mathbb{E}}[Y]$.
- Constant Preservation: $\widetilde{\mathbb{E}}[c]=c$.

Sublinear expectation

- Let Ω be a given set and \mathcal{H} be a vector lattice on Ω. A sublinear expectation is a functional $\widetilde{\mathbb{E}}: \mathcal{H} \rightarrow \mathbb{R}$ satisfying the following properties:
- Monotonicity: if $X, Y \in \mathcal{H}$ with $X \geq Y$ then $\widetilde{\mathbb{E}}[X] \geq \widetilde{\mathbb{E}}[Y]$.
- Constant Preservation: $\widetilde{\mathbb{E}}[c]=c$.
- Sub-additivity:

$$
\widetilde{\mathbb{E}}[X+Y] \leq \widetilde{\mathbb{E}}[X]+\widetilde{\mathbb{E}}[Y], \quad \forall X, Y \in \mathcal{H} .
$$

Sublinear expectation

- Let Ω be a given set and \mathcal{H} be a vector lattice on Ω. A sublinear expectation is a functional $\widetilde{\mathbb{E}}: \mathcal{H} \rightarrow \mathbb{R}$ satisfying the following properties:
- Monotonicity: if $X, Y \in \mathcal{H}$ with $X \geq Y$ then $\widetilde{\mathbb{E}}[X] \geq \widetilde{\mathbb{E}}[Y]$.
- Constant Preservation: $\widetilde{\mathbb{E}}[c]=c$.
- Sub-additivity:

$$
\widetilde{\mathbb{E}}[X+Y] \leq \widetilde{\mathbb{E}}[X]+\widetilde{\mathbb{E}}[Y], \quad \forall X, Y \in \mathcal{H} .
$$

- Positive homogeneity: $\widetilde{\mathbb{E}}[\lambda X]=\lambda \widetilde{\mathbb{E}}[X], \quad \forall \lambda \geq 0, X \in \mathcal{H}$.

Sublinear expectation

- Let Ω be a given set and \mathcal{H} be a vector lattice on Ω. A sublinear expectation is a functional $\widetilde{\mathbb{E}}: \mathcal{H} \rightarrow \mathbb{R}$ satisfying the following properties:
- Monotonicity: if $X, Y \in \mathcal{H}$ with $X \geq Y$ then $\widetilde{\mathbb{E}}[X] \geq \widetilde{\mathbb{E}}[Y]$.
- Constant Preservation: $\widetilde{\mathbb{E}}[c]=c$.
- Sub-additivity:

$$
\widetilde{\mathbb{E}}[X+Y] \leq \widetilde{\mathbb{E}}[X]+\widetilde{\mathbb{E}}[Y], \quad \forall X, Y \in \mathcal{H} .
$$

- Positive homogeneity: $\widetilde{\mathbb{E}}[\lambda X]=\lambda \widetilde{\mathbb{E}}[X], \quad \forall \lambda \geq 0, \quad X \in \mathcal{H}$.
- $X=\left(X_{1}, \ldots, X_{d}\right)$ is G-normally distributed if $\forall a, b \geq 0$, we have:

$$
a X+b \bar{X} \stackrel{d}{=} \sqrt{a^{2}+b^{2}} X
$$

where \bar{X} in an independent copy of X and G denotes the function

$$
G(A):=\frac{1}{2} \mathbb{E}[(A X, X)]: S_{d} \rightarrow \mathbb{R}
$$

G-expectation

$$
\text { Let } \Omega_{T}=C_{0}\left([0, T], \mathbb{R}^{d}\right), B_{t}(\omega)=\omega_{t} \text { and }
$$

$$
\mathcal{H}_{T}^{0}:=\left\{\varphi\left(B_{t_{1}}, \ldots, B_{t_{n}}\right): n \geq 1 ; \varphi \in C_{b, L i p}\left(\mathbb{R}^{d \times n}\right)\right\}
$$

- G-expectation is a sublinear expectation defined by

$$
\widehat{\mathbb{E}}[X]=\widetilde{\mathbb{E}}\left[\varphi\left(\sqrt{t_{1}-t_{0}} \xi_{1}, \cdots, \sqrt{t_{m}-t_{m-1}} \xi_{m}\right)\right]
$$

for $X=\varphi\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{m}}-B_{t_{m-1}}\right)$, where ξ_{1}, \cdots, ξ_{n} are identically distributed G-normal distribution in a sublinear expectation space $(\widetilde{\Omega}, \widetilde{\mathcal{H}}, \widetilde{\mathbb{E}})$.

G-expectation

$$
\text { Let } \Omega_{T}=C_{0}\left([0, T], \mathbb{R}^{d}\right), B_{t}(\omega)=\omega_{t} \text { and }
$$

$$
\mathcal{H}_{T}^{0}:=\left\{\varphi\left(B_{t_{1}}, \ldots, B_{t_{n}}\right): n \geq 1 ; \varphi \in C_{b, L i p}\left(\mathbb{R}^{d \times n}\right)\right\} .
$$

- G-expectation is a sublinear expectation defined by

$$
\widehat{\mathbb{E}}[X]=\widetilde{\mathbb{E}}\left[\varphi\left(\sqrt{t_{1}-t_{0}} \xi_{1}, \cdots, \sqrt{t_{m}-t_{m-1}} \xi_{m}\right)\right]
$$

for $X=\varphi\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{m}}-B_{t_{m-1}}\right)$, where ξ_{1}, \cdots, ξ_{n} are identically distributed G-normal distribution in a sublinear expectation space $(\widetilde{\Omega}, \widetilde{\mathcal{H}}, \widetilde{\mathbb{E}})$.

- The conditional G-expectation $\widehat{\mathbb{E}}_{t}$ of X knowing \mathcal{H}_{t}^{0}, is defined by

$$
\widehat{\mathbb{E}}_{t_{i}}[X]=\tilde{\varphi}\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{i}}-B_{t_{i-1}}\right)
$$

where

$$
\tilde{\varphi}\left(x_{1}, \cdots, x_{i}\right)=\widehat{\mathbb{E}}\left[\varphi\left(x_{1}, \cdots, x_{i}, B_{t_{i+1}}-B_{t_{i}}, \cdots, B_{t_{m}}-B_{t_{m-1}}\right)\right]
$$

G-capacity

- [Denis, Hu, Peng] There exists a tight family \mathcal{P} of probability measures on $\left(\Omega_{T}, \mathcal{B}\left(\Omega_{T}\right)\right)$, such that

$$
\widehat{\mathbb{E}}[\xi]=\sup _{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}}[\xi] \text { for any } \xi \in \operatorname{Lip}\left(\Omega_{T}\right)
$$

G-capacity

- [Denis, Hu, Peng] There exists a tight family \mathcal{P} of probability measures on $\left(\Omega_{T}, \mathcal{B}\left(\Omega_{T}\right)\right)$, such that

$$
\widehat{\mathbb{E}}[\xi]=\sup _{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}}[\xi] \text { for any } \xi \in \operatorname{Lip}\left(\Omega_{T}\right)
$$

- The Choquet capacity is defined by:

$$
\hat{c}(A):=\sup _{P \in \mathcal{P}} P(A), \quad A \in \mathcal{B}\left(\Omega_{T}\right)
$$

A set $A \subset \mathcal{B}\left(\Omega_{T}\right)$ is called polar if $\hat{c}(A)=0$.

Set of processes

$$
\begin{aligned}
M_{b, 0}(0, T)= & \left\{\eta: \eta_{t}(\omega)=\sum_{j=0}^{N-1} \xi_{j}(\omega) \mathbf{1}_{\left[t_{j}, t_{j+1}\right)}(t), \forall N \in \mathbb{N},\right. \\
& \left.0=t_{0}<\cdots<t_{N}=T, \xi_{j} \in B_{b}\left(\Omega_{t_{j}}\right)\right\}
\end{aligned}
$$

Set of processes

$$
\begin{aligned}
M_{b, 0}(0, T)= & \left\{\eta: \eta_{t}(\omega)=\sum_{j=0}^{N-1} \xi_{j}(\omega) \mathbf{1}_{\left[t_{j}, t_{j+1}\right)}(t), \forall N \in \mathbb{N},\right. \\
& \left.0=t_{0}<\cdots<t_{N}=T, \xi_{j} \in B_{b}\left(\Omega_{t_{j}}\right)\right\} .
\end{aligned}
$$

- For $p \geq 1, M_{*}^{p}(0, T)$ denote the completion of $M_{b, 0}(0, T)$ under

$$
\|\eta\|_{M_{*}^{p}(0, T)}=\left\{\widehat{\mathbb{E}}\left[\int_{0}^{T}\left|\eta_{t}\right|^{p} d t\right]\right\}^{1 / p}
$$

Set of processes

$$
\begin{aligned}
M_{b, 0}(0, T)= & \left\{\eta: \eta_{t}(\omega)=\sum_{j=0}^{N-1} \xi_{j}(\omega) \mathbf{1}_{\left[t_{j}, t_{j+1}\right)}(t), \forall N \in \mathbb{N},\right. \\
& \left.0=t_{0}<\cdots<t_{N}=T, \xi_{j} \in B_{b}\left(\Omega_{t_{j}}\right)\right\}
\end{aligned}
$$

- For $p \geq 1, M_{*}^{p}(0, T)$ denote the completion of $M_{b, 0}(0, T)$ under

$$
\|\eta\|_{M_{*}^{p}(0, T)}=\left\{\widehat{\mathbb{E}}\left[\int_{0}^{T}\left|\eta_{t}\right|^{p} d t\right]\right\}^{1 / p}
$$

- For $\eta \in M_{b, 0}(0, T)$, the stochastic integral with respect to B is defined by

$$
I(\eta)=\int_{0}^{T} \eta_{t} d B_{t}^{a}:=\sum_{j=0}^{N-1} \xi_{j}(\omega)\left(B_{t_{j+1}}^{a}-B_{t_{j}}^{a}\right)
$$

The Domain D

- For a domain $D \subset \mathbb{R}^{d}, r>0$ and $x \in \partial D$, denote by

$$
\begin{aligned}
\mathcal{N}_{x, r} & =\left\{\mathbf{n} \in \mathbb{R}^{d},|\mathbf{n}|=1 \text { and } B(x-r \mathbf{n}, r) \cap D=\varnothing\right\} \\
\mathcal{N}_{x} & =\cup_{r>0} \mathcal{N}_{x, r} .
\end{aligned}
$$

The Domain D

- For a domain $D \subset \mathbb{R}^{d}, r>0$ and $x \in \partial D$, denote by

$$
\begin{aligned}
\mathcal{N}_{x, r} & =\left\{\mathbf{n} \in \mathbb{R}^{d},|\mathbf{n}|=1 \text { and } B(x-r \mathbf{n}, r) \cap D=\varnothing\right\} \\
\mathcal{N}_{x} & =\cup_{r>0} \mathcal{N}_{x, r} .
\end{aligned}
$$

- [Lions, Sznitman 1984] Conditions for the domain D :

The Domain D

- For a domain $D \subset \mathbb{R}^{d}, r>0$ and $x \in \partial D$, denote by

$$
\begin{aligned}
\mathcal{N}_{x, r} & =\left\{\mathbf{n} \in \mathbb{R}^{d},|\mathbf{n}|=1 \text { and } B(x-r \mathbf{n}, r) \cap D=\varnothing\right\} \\
\mathcal{N}_{x} & =\cup_{r>0} \mathcal{N}_{x, r} .
\end{aligned}
$$

- [Lions, Sznitman 1984] Conditions for the domain D:
- CONDITION (A). uniform exterior sphere condition

$$
\exists r_{0}>0 \text { such that } \mathcal{N}_{x}=\mathcal{N}_{x, r_{0}} \neq \varnothing, \forall x \in \partial D .
$$

The Domain D

- For a domain $D \subset \mathbb{R}^{d}, r>0$ and $x \in \partial D$, denote by

$$
\begin{aligned}
\mathcal{N}_{x, r} & =\left\{\mathbf{n} \in \mathbb{R}^{d},|\mathbf{n}|=1 \text { and } B(x-r \mathbf{n}, r) \cap D=\varnothing\right\} \\
\mathcal{N}_{x} & =\cup_{r>0} \mathcal{N}_{x, r} .
\end{aligned}
$$

- [Lions, Sznitman 1984] Conditions for the domain D:
- CONDITION (A). uniform exterior sphere condition

$$
\exists r_{0}>0 \text { such that } \mathcal{N}_{x}=\mathcal{N}_{x, r_{0}} \neq \varnothing, \forall x \in \partial D .
$$

- CONDITION (B). $\exists \delta>0$ and $\beta \in[1, \infty)$ such that $\forall x \in \partial D$ there exists a unit vector I_{x} such that

$$
\left\langle I_{x}, \mathbf{n}\right\rangle \geq \frac{1}{\beta} \quad \text { for any } \quad \mathbf{n} \in \bigcup_{y \in B(x, \delta) \cap \partial D} \mathcal{N}_{y} .
$$

The Domain D

Under the conditions (A) and (B), we have:

$$
\mathbf{n} \in \mathcal{N}_{x} \Leftrightarrow\langle y-x, \mathbf{n}\rangle+\frac{1}{2 r_{0}}|y-x|^{2} \geq 0, \quad \forall y \in \bar{D} .
$$

The Domain D

Under the conditions (A) and (B), we have:

$$
\mathbf{n} \in \mathcal{N}_{x} \Leftrightarrow\langle y-x, \mathbf{n}\rangle+\frac{1}{2 r_{0}}|y-x|^{2} \geq 0, \quad \forall y \in \bar{D} .
$$

- $\forall x \in \mathbb{R}^{d}$ with $\operatorname{dist}(x, \bar{D})<r_{0}$ there exist a unique $\bar{x} \in \bar{D}$ such that $|x-\bar{x}|=\operatorname{dist}(x, \bar{D})$.

The Domain D

Under the conditions (A) and (B), we have:

$$
\mathbf{n} \in \mathcal{N}_{x} \Leftrightarrow\langle y-x, \mathbf{n}\rangle+\frac{1}{2 r_{0}}|y-x|^{2} \geq 0, \quad \forall y \in \bar{D} .
$$

- $\forall x \in \mathbb{R}^{d}$ with $\operatorname{dist}(x, \bar{D})<r_{0}$ there exist a unique $\bar{x} \in \bar{D}$ such that $|x-\bar{x}|=\operatorname{dist}(x, \bar{D})$.
- ([Lions, Sznitman 1984] et [Saisho, Tanaka 1987]) $\exists U$ with the following properties:

The Domain D

Under the conditions (A) and (B), we have:

$$
\mathbf{n} \in \mathcal{N}_{x} \Leftrightarrow\langle y-x, \mathbf{n}\rangle+\frac{1}{2 r_{0}}|y-x|^{2} \geq 0, \quad \forall y \in \bar{D} .
$$

- $\forall x \in \mathbb{R}^{d}$ with $\operatorname{dist}(x, \bar{D})<r_{0}$ there exist a unique $\bar{x} \in \bar{D}$ such that $|x-\bar{x}|=\operatorname{dist}(x, \bar{D})$.
- ([Lions, Sznitman 1984] et [Saisho, Tanaka 1987]) $\exists U$ with the following properties:
- $U \in C^{1}\left(\mathbb{R}^{d}\right), U \geq 0$,

The Domain D

Under the conditions (A) and (B), we have:

$$
\mathbf{n} \in \mathcal{N}_{x} \Leftrightarrow\langle y-x, \mathbf{n}\rangle+\frac{1}{2 r_{0}}|y-x|^{2} \geq 0, \quad \forall y \in \bar{D} .
$$

- $\forall x \in \mathbb{R}^{d}$ with $\operatorname{dist}(x, \bar{D})<r_{0}$ there exist a unique $\bar{x} \in \bar{D}$ such that $|x-\bar{x}|=\operatorname{dist}(x, \bar{D})$.
- ([Lions, Sznitman 1984] et [Saisho, Tanaka 1987]) $\exists U$ with the following properties:
- $U \in C^{1}\left(\mathbb{R}^{d}\right), U \geq 0$,
- $U(x)=|x-\bar{x}|^{2}=d_{D}^{2}(x)$ if $\operatorname{dist}(x, \bar{D}) \leq r_{0} / 2$,

The Domain D

Under the conditions (A) and (B), we have:

$$
\mathbf{n} \in \mathcal{N}_{x} \Leftrightarrow\langle y-x, \mathbf{n}\rangle+\frac{1}{2 r_{0}}|y-x|^{2} \geq 0, \quad \forall y \in \bar{D} .
$$

- $\forall x \in \mathbb{R}^{d}$ with $\operatorname{dist}(x, \bar{D})<r_{0}$ there exist a unique $\bar{x} \in \bar{D}$ such that $|x-\bar{x}|=\operatorname{dist}(x, \bar{D})$.
- ([Lions, Sznitman 1984] et [Saisho, Tanaka 1987]) $\exists U$ with the following properties:
- $U \in C^{1}\left(\mathbb{R}^{d}\right), U \geq 0$,
- $U(x)=|x-\bar{x}|^{2}=d_{D}^{2}(x)$ if $\operatorname{dist}(x, \bar{D}) \leq r_{0} / 2$,
- ∇U is bounded and Lipschitz continous.

Skorohod problem

For $w \in C\left([0, T], \mathbb{R}^{d}\right), w(0)=0$ and $x_{0} \in \bar{D}$, we consider the following Skorohod's equation:

$$
\begin{equation*}
\xi(t)=x_{0}+w(t)+\phi(t), \quad t \in[0, T] \tag{1}
\end{equation*}
$$

- A solution of the Skorokhod problem (1), is a couple ($\xi, \phi)$ satisfying:

Skorohod problem

For $w \in C\left([0, T], \mathbb{R}^{d}\right), w(0)=0$ and $x_{0} \in \bar{D}$, we consider the following Skorohod's equation:

$$
\begin{equation*}
\xi(t)=x_{0}+w(t)+\phi(t), \quad t \in[0, T] \tag{1}
\end{equation*}
$$

- A solution of the Skorokhod problem (1), is a couple ($\xi, \phi)$ satisfying:
- ξ is continuous with values in \bar{D},

Skorohod problem

For $w \in C\left([0, T], \mathbb{R}^{d}\right), w(0)=0$ and $x_{0} \in \bar{D}$, we consider the following Skorohod's equation:

$$
\begin{equation*}
\xi(t)=x_{0}+w(t)+\phi(t), \quad t \in[0, T] \tag{1}
\end{equation*}
$$

- A solution of the Skorokhod problem (1), is a couple (ξ, ϕ) satisfying:
- ξ is continuous with values in \bar{D},
- ϕ is continuous, with finite variation on $[0, T], \phi(0)=0$ and $\forall t \in[0, T]$

$$
\phi(t)=\int_{0}^{t} \mathbf{n}(s) d|\phi|_{s}, \quad \text { and }|\phi|_{t}=\int_{0}^{t} 1_{\partial D}(\xi(s)) d|\phi|_{s},
$$

where $\mathbf{n}(s) \in \mathcal{N}_{\xi(s)}$ if $\xi(s) \in \partial D$.

Skorohod problem

For $w \in C\left([0, T], \mathbb{R}^{d}\right), w(0)=0$ and $x_{0} \in \bar{D}$, we consider the following Skorohod's equation:

$$
\begin{equation*}
\xi(t)=x_{0}+w(t)+\phi(t), \quad t \in[0, T] \tag{1}
\end{equation*}
$$

- A solution of the Skorokhod problem (1), is a couple ($\xi, \phi)$ satisfying:
- ξ is continuous with values in \bar{D},
- ϕ is continuous, with finite variation on $[0, T], \phi(0)=0$ and
$\forall t \in[0, T]$

$$
\phi(t)=\int_{0}^{t} \mathbf{n}(s) d|\phi|_{s}, \quad \text { and }|\phi|_{t}=\int_{0}^{t} 1_{\partial D}(\xi(s)) d|\phi|_{s},
$$

where $\mathbf{n}(s) \in \mathcal{N}_{\xi(s)}$ if $\xi(s) \in \partial D$.

- [Lions et Sznitman 1984] under the conditions (A) and (B), if w is is continuous, there exists a unique solution (ξ, ϕ) for the Skorokhod problem.

Reflected G-Brownian motion

Consider :

$$
\begin{equation*}
X_{t}=x_{0}+B_{t}+K_{t}, \quad 0 \leq t \leq T \tag{2}
\end{equation*}
$$

We call (X, K) a solution of G-Skorohod problem (2) if there exists a polar set A such that:

- $X, K \in M_{*}^{2}\left([0, T], \mathbb{R}^{d}\right)$ q.s. continuous

$$
X_{t}=x_{0}+B_{t}+K_{t}, \quad 0 \leq t \leq T
$$

Reflected G-Brownian motion

Consider:

$$
\begin{equation*}
X_{t}=x_{0}+B_{t}+K_{t}, \quad 0 \leq t \leq T \tag{2}
\end{equation*}
$$

We call (X, K) a solution of G-Skorohod problem (2) if there exists a polar set A such that:

- $X, K \in M_{*}^{2}\left([0, T], \mathbb{R}^{d}\right)$ q.s. continuous

$$
X_{t}=x_{0}+B_{t}+K_{t}, \quad 0 \leq t \leq T
$$

$$
\forall \omega \in A^{c}, X_{t}(\omega) \in \bar{D},|K .(\omega)|_{0}^{T}<\infty \text { and } K_{0}(\omega)=0
$$

Reflected G-Brownian motion

Consider:

$$
\begin{equation*}
X_{t}=x_{0}+B_{t}+K_{t}, \quad 0 \leq t \leq T \tag{2}
\end{equation*}
$$

We call (X, K) a solution of G-Skorohod problem (2) if there exists a polar set A such that:

- $X, K \in M_{*}^{2}\left([0, T], \mathbb{R}^{d}\right)$ q.s. continuous

$$
X_{t}=x_{0}+B_{t}+K_{t}, \quad 0 \leq t \leq T
$$

$$
\forall \omega \in A^{c}, X_{t}(\omega) \in \bar{D},|K .(\omega)|_{0}^{T}<\infty \text { and } K_{0}(\omega)=0
$$

- $\forall \omega \in A^{c}$,

$$
\begin{aligned}
|K|_{t}(\omega) & =\int_{0}^{t} \mathbf{1}_{\left\{X_{s}(\omega) \in \partial D\right\}} d|K|_{s}(\omega) \\
K_{t}(\omega) & =\int_{0}^{t} \mathbf{n}\left(X_{s}(\omega)\right) d|K|_{s}(\omega), \forall t \in[0, T]
\end{aligned}
$$

Penalization

[Saisho, Tanaka 1987] For any $m \geq 1$, consider the equation

$$
\begin{gathered}
X_{t}^{m}=x_{0}+B_{t}-\frac{m}{2} \int_{0}^{t} \nabla U\left(X_{s}^{m}\right) d s, \quad 0 \leq t \leq T \quad \text { q.s., } \\
K_{t}^{m}=-\frac{m}{2} \int_{0}^{t} \nabla U\left(X_{s}^{m}\right) d s .
\end{gathered}
$$

- The G-SDE (3) (cf [Lin 2013]) has a unique solution $X^{m} \in M_{*}^{p}\left([0, T], \mathbb{R}^{d}\right)$ and $K^{m} \in M_{*}^{p}\left([0, T], \mathbb{R}^{d}\right), p \geq 1$.

Penalization

[Saisho, Tanaka 1987] For any $m \geq 1$, consider the equation

$$
\begin{gathered}
X_{t}^{m}=x_{0}+B_{t}-\frac{m}{2} \int_{0}^{t} \nabla U\left(X_{s}^{m}\right) d s, \quad 0 \leq t \leq T \quad \text { q.s., } \\
K_{t}^{m}=-\frac{m}{2} \int_{0}^{t} \nabla U\left(X_{s}^{m}\right) d s .
\end{gathered}
$$

- The G-SDE (3) (cf [Lin 2013]) has a unique solution $X^{m} \in M_{*}^{p}\left([0, T], \mathbb{R}^{d}\right)$ and $K^{m} \in M_{*}^{p}\left([0, T], \mathbb{R}^{d}\right), p \geq 1$.
- [Saisho, Tanaka 1987]) Under the conditions (A) and (B), there exists a polar set A such that $\forall \omega \in A^{c}$, then $\left(X^{m}(\omega), K^{m}(\omega)\right)_{m \geq 1}$ converges uniformly to the solution of Skorohod problem

$$
X_{t}(\omega)=x_{0}+B_{t}(\omega)+K_{t}(\omega) .
$$

Penalization

- For $\omega \in A^{c}$ and $\left.\alpha \in\right] 0,1 / 2[$, the modulus of uniform continuity of ω. is defined for $h \in[0, T]$ by

$$
\Delta_{0, T, h}^{\alpha}(\omega):=\sup _{\substack{0 \leq s<t \leq T \\|t-s| \leq h}}\left|\omega_{t}-\omega_{s}\right| \leq h^{\alpha} \sup _{\substack{0 \leq s<t \leq T \\|t-s| \leq h}} \frac{\left|\omega_{t}-\omega_{s}\right|}{|t-s|^{\alpha}} \leq h^{\alpha}\|\omega\|_{\alpha}
$$

where

$$
\|\omega\|_{\alpha}=\sup _{0 \leq s<t \leq T} \frac{\left|\omega_{t}-\omega_{s}\right|}{|t-s|^{\alpha}} .
$$

Penalization

- For $\omega \in A^{c}$ and $\left.\alpha \in\right] 0,1 / 2[$, the modulus of uniform continuity of ω. is defined for $h \in[0, T]$ by

$$
\Delta_{0, T, h}^{\alpha}(\omega):=\sup _{\substack{0 \leq s<t \leq T \\|t-s| \leq h}}\left|\omega_{t}-\omega_{s}\right| \leq h^{\alpha} \sup _{\substack{0 \leq s<t \leq T \\|t-s| \leq h}} \frac{\left|\omega_{t}-\omega_{s}\right|}{|t-s|^{\alpha}} \leq h^{\alpha}\|\omega\|_{\alpha}
$$

where

$$
\|\omega\|_{\alpha}=\sup _{0 \leq s<t \leq T} \frac{\left|\omega_{t}-\omega_{s}\right|}{|t-s|^{\alpha}} .
$$

- For $m \in \mathbb{N}^{*}$, set:

$$
\varepsilon_{m}^{\alpha}(\omega)=\frac{12 e^{L}}{m^{\alpha}}\|\omega\|_{\alpha}
$$

where $2 L$ is the Lipschitz constant of ∇U.

Estimates of K

Let $0<\varepsilon_{m}^{\alpha}(\omega)<\min \left(\delta / 2, r_{0} / 2\right):=\tau$, and set :

$$
\begin{align*}
T_{m, 0} & =\inf \left\{t \geq 0: \overline{X_{t}^{m}(\omega)} \in \partial D\right\} \\
t_{m, n} & =\inf \left\{t>T_{m, n-1}:\left|\overline{X_{t}^{m}(\omega)}-\overline{X_{T_{m, n-1}}^{m}(\omega)}\right| \geq \delta / 2\right\} \tag{4}\\
T_{m, n} & =\inf \left\{t \geq t_{m, n}: \overline{X_{t}^{m}(\omega)} \in \partial D\right\}
\end{align*}
$$

Lemma

If $T_{m, n-1} \leq s<t \leq T_{m, n}$, then
$\Delta_{s, t}\left(X^{m}(\omega)\right) \leq 9 \beta\left(\Delta_{s, t}(B .(\omega))+\varepsilon_{m}^{\alpha}(\omega)\right) \exp \left\{\gamma\left(\|B .(\omega)\|_{T}+\delta\right)\right\}$,
where $\gamma=\frac{2 \kappa^{2} \beta}{r_{0}},\|B .(\omega)\|_{T}=\sup \left\{\left|B_{t}(\omega)\right|: 0 \leq t \leq T\right\}$ and
$\Delta_{s, t}(X .(\omega))=\sup \left\{\left|X_{t_{2}}(\omega)-X_{t_{1}}(\omega)\right|: s \leq t_{1}<t_{2} \leq t\right\}$.

Estimates of K

Proposition

If D satisfies (A) and (B), then for all $\omega \in A_{m}$, we have

$$
\begin{equation*}
\left|K_{.^{m}}\right|_{T}(\omega) \leq C\|B .(\omega)\|_{\alpha}^{1+1 / \alpha} \exp \left\{\gamma\left(1+\frac{1}{\alpha}\right)\|B .(\omega)\|_{T}\right\} \tag{6}
\end{equation*}
$$

where $C:=\left(r_{0}, \beta, \delta, T, L\right)$.

Estimates of K

- Since $\varepsilon_{m}^{\alpha}(\omega)<r_{0} / 2$, we have

$$
\nabla U\left(X_{t}^{m}(\omega)\right)=2\left(X_{t}^{m}(\omega)-\overline{X_{t}^{m}(\omega)}\right), \quad 0 \leq t \leq T
$$

Estimates of K

- Since $\varepsilon_{m}^{\alpha}(\omega)<r_{0} / 2$, we have

$$
\nabla U\left(X_{t}^{m}(\omega)\right)=2\left(X_{t}^{m}(\omega)-\overline{X_{t}^{m}(\omega)}\right), \quad 0 \leq t \leq T
$$

- From condition (B), we gets for $T_{m, n-1} \leq s<t \leq T_{m, n}$

$$
\left|K_{.}^{m}\right|_{t}^{s}(\omega) \leq \beta\left\{\Delta_{s, t}\left(X_{.}^{m}(\omega)\right)+\Delta_{s, t}(B .(\omega))\right\}
$$

Estimates of K

- Since $\varepsilon_{m}^{\alpha}(\omega)<r_{0} / 2$, we have

$$
\nabla U\left(X_{t}^{m}(\omega)\right)=2\left(X_{t}^{m}(\omega)-\overline{X_{t}^{m}(\omega)}\right), \quad 0 \leq t \leq T
$$

- From condition (B), we gets for $T_{m, n-1} \leq s<t \leq T_{m, n}$

$$
\left|K_{\cdot}^{m}\right|_{t}^{s}(\omega) \leq \beta\left\{\Delta_{s, t}\left(X^{m}(\omega)\right)+\Delta_{s, t}(B \cdot(\omega))\right\}
$$

- And (5) implies

$$
\begin{equation*}
\left|K_{\cdot}^{m}\right|_{t}^{s}(\omega) \leq 10 \beta^{2} \lambda\left\{\Delta_{s, t}(B .(\omega))+\varepsilon_{m}^{\alpha}(\omega)\right\} \tag{7}
\end{equation*}
$$

where $\lambda=\exp \left\{\gamma\left(\|B .(\omega)\|_{T}+\delta\right)\right\}$.

Estimates of K

- (4) and (5) imply

$$
\Delta_{m}:=\frac{\delta-4 \varepsilon_{m}^{\alpha}(\omega)}{20 \beta^{2} \lambda}-\varepsilon_{m}^{\alpha}(\omega) \leq \Delta_{T_{m, n-1}, t_{m, n}}(B .(\omega))
$$

Estimates of K

- (4) and (5) imply

$$
\Delta_{m}:=\frac{\delta-4 \varepsilon_{m}^{\alpha}(\omega)}{20 \beta^{2} \lambda}-\varepsilon_{m}^{\alpha}(\omega) \leq \Delta_{T_{m, n-1}, t_{m, n}}(B .(\omega))
$$

- since $\lim _{n \rightarrow \infty} \Delta_{m}=\frac{\delta}{20 \beta^{2} \lambda}>0, \exists m_{0} \geq 1$ such that $\forall m \geq m_{0}$,

$$
\frac{\delta}{25 \beta^{2} \lambda} \leq \Delta_{T_{m, n-1}, t_{m, n}}(B .(\omega))
$$

Estimates of K

- (4) and (5) imply

$$
\Delta_{m}:=\frac{\delta-4 \varepsilon_{m}^{\alpha}(\omega)}{20 \beta^{2} \lambda}-\varepsilon_{m}^{\alpha}(\omega) \leq \Delta_{T_{m, n-1}, t_{m, n}}(B .(\omega))
$$

- since $\lim _{n \rightarrow \infty} \Delta_{m}=\frac{\delta}{20 \beta^{2} \lambda}>0, \exists m_{0} \geq 1$ such that $\forall m \geq m_{0}$,

$$
\frac{\delta}{25 \beta^{2} \lambda} \leq \Delta_{T_{m, n-1}, t_{m, n}}(B .(\omega))
$$

- For $h=\left(\frac{\delta}{25 \beta^{2} \lambda\|B .(\omega)\|_{\alpha}}\right)^{1 / \alpha}>0, \forall m \geq m_{0}, n>\frac{T}{h} \Rightarrow T_{m, n}>T$.

$$
(7) \Rightarrow\left|K^{m}\right|_{T}(\omega) \leq 10\left(\frac{T}{h}+1\right) \beta^{2} \lambda\left\{\Delta_{0, T}(B .(\omega))+\varepsilon_{m}^{\alpha}(\omega)\right\}
$$

Convergence

Lemma

- There exist two positive constants C and λ, such that:

$$
\begin{equation*}
\hat{c}\left(A_{m}^{c}\right) \leq C e^{-\lambda m}, \text { where } A_{m}=\left\{\omega \in \Omega_{T} ; \varepsilon_{m}^{\alpha}(\omega) \leq \tau\right\} \tag{8}
\end{equation*}
$$

- $\forall v \geq 0, \exists C_{v}$ dependent only on v such that

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(v \sup _{0 \leq t \leq T}\left|B_{t}\right|\right)\right] \leq C_{v} \tag{9}
\end{equation*}
$$

Proposition

If the domain D satisfies conditions (A) and (B), then $\forall p>\frac{2 \alpha^{2}}{(1+\alpha)(1-2 \alpha)}$:
$\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|X_{t}^{m}\right|^{p}\right]+\mathbb{E}\left[\left(\left|K^{m}\right|_{T}\right)^{p}\right] \leq C_{p}$ where $C_{p}:=\left(T, p, C_{G}, L, \beta, \delta\right)>0$

Convergence

- $\forall \omega \in A_{m}^{c},\left|K^{m}\right|_{T}(\omega) \leq \frac{m}{2} T \Lambda$. Letting $\mu=p\left(1+\frac{1}{\alpha}\right)$, we have

$$
\begin{aligned}
\mathbb{E}\left[\left(\left|K^{m}\right|_{T}\right)^{p}\right] \leq & C_{p}\left\{\left\{\mathbb{E}\left[\left(\sup _{0 \leq s<t \leq T} \frac{\left|B_{t}-B_{s}\right|}{|t-s|^{\alpha}}\right)^{\mu / \alpha}\right]\right\}^{\alpha}\right. \\
& \left.\times\left\{\mathbb{E}\left[\exp \left(\frac{4 \gamma \beta \mu}{1-\alpha} \sup _{0 \leq t \leq T}\left|B_{t}\right|\right)\right]\right\}^{1-\alpha}+m^{p} e^{-\lambda m^{\alpha}}\right\}
\end{aligned}
$$

Convergence

- $\forall \omega \in A_{m}^{c},\left|K^{m}\right|_{T}(\omega) \leq \frac{m}{2} T \Lambda$. Letting $\mu=p\left(1+\frac{1}{\alpha}\right)$, we have

$$
\begin{aligned}
\mathbb{E}\left[\left(\left|K^{m}\right|_{T}\right)^{p}\right] \leq & C_{p}\left\{\left\{\mathbb{E}\left[\left(\sup _{0 \leq s<t \leq T} \frac{\left|B_{t}-B_{s}\right|}{|t-s|^{\alpha}}\right)^{\mu / \alpha}\right]\right\}^{\alpha}\right. \\
& \left.\times\left\{\mathbb{E}\left[\exp \left(\frac{4 \gamma \beta \mu}{1-\alpha} \sup _{0 \leq t \leq T}\left|B_{t}\right|\right)\right]\right\}^{1-\alpha}+m^{p} e^{-\lambda m^{\alpha}}\right)
\end{aligned}
$$

- On the other hand, from

$$
X_{t}^{m}=x_{0}+B_{t}+K_{t}^{m}
$$

we get

$$
\sup _{0 \leq t \leq T}\left|X_{t}^{m}\right|^{p} \leq C_{p}\left(\left|x_{0}\right|^{p}+\sup _{0 \leq t \leq T}\left|B_{t}\right|^{p}+\left(\left|K^{m}\right|_{T}\right)^{p}\right)
$$

Convergence

Theorem

Suppose that the domain D satisfies conditions (A) and (B). Then, there exists a unique pair of processes $(X, K) \in\left(M_{*}^{p}([0, T])\right)^{2}$, satisfying q.s.:
-

$$
X_{t}=x_{0}+B_{t}+K_{t}, \quad 0 \leq t \leq T, \text { q.s. }
$$

- X takes values in \bar{D},
- $K_{0}=0, K$ is bounded variation and

$$
|K|_{t}=\int_{0}^{t} \mathbf{1}_{\partial \mathcal{D}}\left(X_{s}\right) d|K|_{s}, \quad K_{t}=\int_{0}^{t} \mathbf{n}\left(X_{s}\right) d|K|_{s}
$$

Convergence

- Since the sequence $\left(X^{m}\right)_{m \geq 1}$ converges q.s. to X, for $p \geq 1$ we have

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|X_{t}\right|^{p}\right] \leq \mathbb{E}\left[\liminf _{m \rightarrow \infty}\left(\sup _{0 \leq t \leq T}\left|X_{t}^{m}\right|^{p}\right)\right] \leq C_{p}
$$

Convergence

- Since the sequence $\left(X^{m}\right)_{m \geq 1}$ converges q.s. to X, for $p \geq 1$ we have

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|X_{t}\right|^{p}\right] \leq \mathbb{E}\left[\liminf _{m \rightarrow \infty}\left(\sup _{0 \leq t \leq T}\left|X_{t}^{m}\right|^{p}\right)\right] \leq C_{p}
$$

- For $\varepsilon>0$, set

$$
B_{\varepsilon}=\bigcup_{k \geq 1} \bigcup_{n \geq m_{k}}\left\{\omega \in \Omega ; \sup _{0 \leq t \leq T}\left|X^{m}(\omega)-X(\omega)\right|>\frac{1}{k}\right\}
$$

we get $\hat{c}\left(B_{\varepsilon}\right) \leq \varepsilon$.

Convergence

- Since the sequence $\left(X^{m}\right)_{m \geq 1}$ converges q.s. to X, for $p \geq 1$ we have

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|X_{t}\right|^{p}\right] \leq \mathbb{E}\left[\liminf _{m \rightarrow \infty}\left(\sup _{0 \leq t \leq T}\left|X_{t}^{m}\right|^{p}\right)\right] \leq C_{p}
$$

- For $\varepsilon>0$, set

$$
B_{\varepsilon}=\bigcup_{k \geq 1} \bigcup_{n \geq m_{k}}\left\{\omega \in \Omega ; \sup _{0 \leq t \leq T}\left|X^{m}(\omega)-X(\omega)\right|>\frac{1}{k}\right\}
$$

we get $\hat{c}\left(B_{\varepsilon}\right) \leq \varepsilon$.

- Let $m_{\varepsilon} \in \mathbb{N}$ such that

$$
\forall m \geq m_{\varepsilon} \Rightarrow \sup _{0 \leq t \leq T}\left|X^{m}(\omega)-X(\omega)\right| \mathbf{1}_{B_{\varepsilon}} \leq \varepsilon
$$

then, $\forall m \geq m_{\varepsilon}$ we have

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|X_{t}^{m}-X_{t}\right|^{p}\right] \leq \varepsilon^{p}+2^{p} \varepsilon^{1 / 2} C_{p}
$$

Case of G-Itô processes

Consider the G-Itô processes

$$
M_{t}=\int_{0}^{t} \alpha_{s} d s+\int_{0}^{t} \eta_{s} d\langle B\rangle_{s}+\int_{0}^{t} \beta_{s} d B_{s}, \quad 0 \leq t \leq T
$$

where $\alpha, \eta, \beta \in M_{*}^{p}([0, T]), p>2$, such that there exists $L>0$

$$
\sup _{0 \leq t \leq T} \mathbb{E}\left[\left|\alpha_{t}\right|^{p}\right]+\sup _{0 \leq t \leq T} \mathbb{E}\left[\left|\eta_{t}\right|^{p}\right]+\sup _{0 \leq t \leq T} \mathbb{E}\left[\left|\beta_{t}\right|^{p}\right] \leq L
$$

- Then, for $0<s<t<T$ and $p>2, \exists C_{p}:=\left(p, C_{G}, L\right)$ such that :

$$
\mathbb{E}\left[\left|M_{t}-M_{s}\right|^{p}\right] \leq C_{p}|t-s|^{\frac{p}{2}} .
$$

Case of G-Itô processes

Consider the G-Itô processes

$$
M_{t}=\int_{0}^{t} \alpha_{s} d s+\int_{0}^{t} \eta_{s} d\langle B\rangle_{s}+\int_{0}^{t} \beta_{s} d B_{s}, \quad 0 \leq t \leq T
$$

where $\alpha, \eta, \beta \in M_{*}^{p}([0, T]), p>2$, such that there exists $L>0$

$$
\sup _{0 \leq t \leq T} \mathbb{E}\left[\left|\alpha_{t}\right|^{p}\right]+\sup _{0 \leq t \leq T} \mathbb{E}\left[\left|\eta_{t}\right|^{p}\right]+\sup _{0 \leq t \leq T} \mathbb{E}\left[\left|\beta_{t}\right|^{p}\right] \leq L
$$

- Then, for $0<s<t<T$ and $p>2, \exists C_{p}:=\left(p, C_{G}, L\right)$ such that:

$$
\mathbb{E}\left[\left|M_{t}-M_{s}\right|^{p}\right] \leq C_{p}|t-s|^{\frac{p}{2}} .
$$

- There exists a polar set A such that $\forall \omega \in A^{c}, M .(\omega)$ is α-Hölder continuous, for any $\alpha \in\left[0, \frac{1}{2}-\frac{1}{p}[\right.$.

Case of G-Itô processés

By the same method as for the G-Brownian motion, we get

Corollary

Let $x_{0} \in \bar{D}$. there exists a unique pair of process $(X, K) \in\left(M_{*}^{p}([0, T])\right)^{2}$, satisfying q.s.

$$
X_{t}=x_{0}+M_{t}+K_{t}, \quad 0 \leq t \leq T, \text { q.s. }
$$

- X takes values in \bar{D},
- $K_{0}=0, K$ is bounded variation and

$$
K_{t}=\int_{0}^{t} n(s) d|K|_{s}, \quad|K|_{t}=\int_{0}^{t} \mathbf{1}_{\partial \bar{D}}\left(X_{s}\right) d|K|_{s}
$$

Existence and uniqueness of reflected G-SDE

For $x_{0} \in \bar{D}$, consider the following equation :

$$
\begin{equation*}
X_{t}=x_{0}+\int_{0}^{t} g\left(s, X_{s}\right) d B_{s}+\int_{0}^{t} f\left(s, X_{s}\right) d s-K_{t}, \quad 0 \leq t \leq T \tag{10}
\end{equation*}
$$

where $f: \Omega \times[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $g: \Omega \times[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times n}$ satisfy:

- (H1) For any $x \in \mathbb{R}^{d}$ the processes

$$
f_{i}(\cdot, x), g_{i j}(\cdot, x) \in M_{*}^{2}([0, T]), i=1, \ldots, d \text { and } j=1, \ldots, n
$$

- (H2) $f_{i}, g_{i j}$ are uniformly bounded and $\forall t \in[0, T], \forall x, y \in \mathbb{R}^{d}$,

$$
\left|g_{i j}(t, x)-g_{i j}(t, y)\right|+\left|f_{i}(t, x)-f_{i}(t, y)\right| \leq L|x-y|
$$

Existence and uniqueness of reflected G-SDE

$(X, K) \in M_{*}^{2}\left([0, T] ; \mathbb{R}^{d}\right) \times M_{*}^{2}\left([0, T] ; \mathbb{R}^{d}\right)$ q.s. continuous on $[0, T]$ is a solution of (10) if:

- (X, K) satisfy (10);

Existence and uniqueness of reflected G-SDE

$(X, K) \in M_{*}^{2}\left([0, T] ; \mathbb{R}^{d}\right) \times M_{*}^{2}\left([0, T] ; \mathbb{R}^{d}\right)$ q.s. continuous on $[0, T]$ is a solution of (10) if:

- (X, K) satisfy (10);
- There exists a polar set A such that $\forall \omega \in A^{c}, X_{t}(\omega) \in \bar{D}$, $|K .|_{T}^{0}(\omega)<\infty$ and $K_{0}(\omega)=0$;

Existence and uniqueness of reflected G-SDE

$(X, K) \in M_{*}^{2}\left([0, T] ; \mathbb{R}^{d}\right) \times M_{*}^{2}\left([0, T] ; \mathbb{R}^{d}\right)$ q.s. continuous on $[0, T]$ is a solution of (10) if:

- (X, K) satisfy (10);
- There exists a polar set A such that $\forall \omega \in A^{c}, X_{t}(\omega) \in \bar{D}$, $|K .|_{T}^{0}(\omega)<\infty$ and $K_{0}(\omega)=0$;
- $\forall \omega \in A^{c}$

$$
\begin{aligned}
|K(\omega)|_{t} & =\int_{0}^{t} \mathbf{1}_{\left(x_{s}(\omega) \in \partial \bar{D}\right)} d|K(\omega)|_{s} \\
K_{t}(\omega) & =\int_{0}^{t} \xi_{s} d|K(\omega)|_{s}
\end{aligned}
$$

with $\xi_{s} \in \mathbf{n}\left(X_{s}\right)$.

Existence and uniqueness of reflected G-SDE

Condition (C): [Lions, Sznitman 1984] $\exists \phi \in C_{b}^{2}\left(\mathbb{R}^{d}\right)$ and $\gamma>0$ such that :

$$
\forall x \in \partial D, \forall y \in \bar{D}, \forall \mathbf{n} \in \mathcal{N}_{x}\langle y-x, \mathbf{n}\rangle+\frac{1}{\gamma}\langle\nabla \phi(x), \mathbf{n}\rangle|y-x|^{2} \geq 0
$$

If (Y, K) is a solution of Skorokhod problem

$$
\left(x_{0}+\int_{0} g\left(s, X_{s}\right) d B_{s}+\int_{0}^{\cdot} f\left(s, X_{s}\right) d s, D, n(\cdot)\right)
$$

and $y_{t} \in \bar{D}$, we have:

$$
\begin{equation*}
\frac{1}{\gamma} \int_{0}^{t}\left|Y_{s}-y_{s}\right|^{2}\left\langle\nabla \phi\left(Y_{s}\right), d K_{s}\right\rangle \leq \int_{0}^{t}\left\langle Y_{s}-y_{s}, d K_{s}\right\rangle \tag{11}
\end{equation*}
$$

Existence and uniqueness of reflected G-SDE

Proposition

Assume that D satisfies (\mathbf{A}), (\mathbf{B}) and (\mathbf{C}) and for $i=1,2, g^{i}, f^{i}$ verify $(\mathbf{H} 1)$ and $(\mathbf{H} 2)$. For $x_{0} \in \bar{D}$, let $\left(X^{i}, K^{i}\right)$ be the solution of

$$
X_{t}^{i}=x_{0}+\int_{0}^{t} g^{i}\left(s, X_{s}^{i}\right) d B_{s}+\int_{0}^{t} f^{i}\left(s, X_{s}^{i}\right) d s-K_{t}^{i} .
$$

$\exists C:=\left(d, T, L, M, C_{D}, C_{G}\right)>0$ such that :

$$
\begin{aligned}
& \mathbb{E}\left[\sup _{0 \leq u \leq T}\left|X_{u}^{1}-X_{u}^{2}\right|^{4}\right]+\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|K_{t}^{1}-K_{t}^{2}\right|^{4}\right] \\
\leq & C\left(\mathbb{E}\left[\sup _{0 \leq u \leq T}\left|\hat{g}_{u}\right|^{4}\right]+\mathbb{E}\left[\sup _{0 \leq u \leq T}\left|\hat{f}_{u}\right|^{4}\right]\right),
\end{aligned}
$$

where $\hat{\mathrm{g}}_{s}=g^{1}\left(s, X_{s}^{2}\right)-g^{2}\left(s, X_{s}^{2}\right)$ and $\hat{f}_{s}=f^{1}\left(s, X_{s}^{2}\right)-f^{2}\left(s, X_{s}^{2}\right)$.

Existence and uniqueness of reflected G-EDS

Theorem

Suppose the domain D satisfies the conditions $(A),(B)$ and (C) and functions $g_{i j}$, f_{i} verify the hypothesis (H1) and (H2). Then for every $x_{0} \in \bar{D}$ the equation (10) has a unique solution.

For $i \in\{1,2\}$, let $X^{i} \in M_{*}^{2}([0, T] ; \bar{D})$ and

$$
Y_{t}^{i}=x_{0}+\int_{0}^{t} g\left(s, X_{s}^{i}\right) d B_{s}+\int_{0}^{t} f\left(s, X_{s}^{i}\right) d s-K_{t}^{i} .
$$

It is shown that:

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|Y_{t}^{1}-Y_{t}^{2}\right|^{4}\right] \leq C \mathbb{E}\left[\sup _{0 \leq t \leq T}\left|X_{t}^{1}-X_{t}^{2}\right|^{4}\right] .
$$

