Optimal Bounds for Risk Measures

Nabil Kazi-Tani Laboratoire de Sciences Actuarielle et Financière (SAF), Lyon 1 University Joint work with Stéphane Loisel

Young Researchers Meeting in Probability, Numerics and Finance Le Mans June 30, 2016

The Problem

Let $R: L^p \to \mathbb{R}$ be a given functional $(p \ge 1)$.

We want to solve the following optimization problem:

$\sup_{X\in\mathcal{L}}R(X)$

where ${\mathcal L}$ denotes the set of probability laws on ${\mathbb R}$ such that

$$\mathbb{E}[g_i(X)] = c_i, \ \forall i \in I,$$

where $\{g_i, i \in I\}$ is a finite set of given functions and $\{c_i, i \in I\}$ are given constants.

The Problem

Interesting criteria:

- $R(X) := \rho(X)$ is a given risk measure.
- $R(X) := \mathbb{E}[v(X)].$

< 注 > < 注 >

The Problem

Interesting criteria:

- $R(X) := \rho(X)$ is a given risk measure.
- $R(X) := \mathbb{E}[v(X)].$

Interesting constraints:

- $g_i(x) = x^i, i = 0, ..., k.$
- The functions $\{g_i, i \in I\}$ form a Tchebycheff system.

Risk Measures

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a given probability space.

We consider a mapping $\rho: L^p \to \mathbb{R} \cup \{\infty\}$:

- If $X \ge Y$ \mathbb{P} -a.s. then $\rho(X) \ge \rho(Y)$. (Losses orientation)
- $\rho(X + m) = \rho(X) + m, m \in \mathbb{R}$. (Cash additivity property: Capital requirement)
- Law invariance : If X = Y in law (under \mathbb{P}) then $\rho(X) = \rho(Y)$.

Risk Measures

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a given probability space.

We consider a mapping $\rho: L^p \to \mathbb{R} \cup \{\infty\}$:

- If $X \ge Y$ \mathbb{P} -a.s. then $\rho(X) \ge \rho(Y)$. (Losses orientation)
- $\rho(X + m) = \rho(X) + m, m \in \mathbb{R}$. (Cash additivity property: Capital requirement)
- Law invariance : If X = Y in law (under \mathbb{P}) then $\rho(X) = \rho(Y)$.
- If X cannot be used as a hedge for Y (X and Y comonotone variables), then no possible diversification (comonotonic risk measures): ρ(X + Y) = ρ(X) + ρ(Y).

Monetary risk measures

Growing need of regulation professionals and VaR drawbacks conducted to an axiomatic analysis of required solvency capital.

- Artzner, Delbaen, Eber, and Heath (1999) (Coherent case)
- Frittelli, M. and Rosazza Gianin, E. (2002) (Convex case)
- Föllmer, H. and Schied, A. (2004) (Monography)
- Bion-Nadal, (2008-2009); Bion-Nadal and Kervarec (2010), Cheridito, Delbaen, and Kupper (2004) (Dynamic case)
- Acciaio (2007, 2009), Barrieu and El Karoui (2008), Jouini, Schachermayer and Touzi (2006,2008), Kervarec (2008) (Inf-convolution)

Many other references...

-∢ ⊒ ▶

Motivations

• Quantification of model uncertainty: Barrieu and Scandolo, Assessing financial model risk, European J. of Operational Research (2015)

Motivations

• Quantification of model uncertainty: Barrieu and Scandolo, Assessing financial model risk, European J. of Operational Research (2015)

Proposed metric:

$$\mathsf{RM}(\mathsf{X}_0,\mathcal{L}) := rac{\overline{
ho}(\mathcal{L}) -
ho(\mathsf{X}_0)}{\overline{
ho}(\mathcal{L}) - \underline{
ho}(\mathcal{L})}$$

where

$$\overline{\rho}(\mathcal{L}) := \sup_{X \in \mathcal{L}} \rho(X) \quad \text{and} \quad \underline{\rho}(\mathcal{L}) := \inf_{X \in \mathcal{L}} \rho(X)$$

Motivations

• Model free pricing in insurance.

Compute

 $\sup_{X\in\mathcal{L}}\mathbb{E}[v(X)]$

where v is a given convex function.

- Jansen, Haezendonck and Goovaerts (1986)
- Hurlimann (1988)

- Law invariance : Duality between the Distribution formulation and the Quantile formulation.
- Approximation of quantile and distribution curves by constrained step functions.
- Convex functions : continuity properties.

Solve the following optimization problem :

 $\sup_{X\in\mathcal{L}}\rho(X)$

where ${\mathcal L}$ denotes the set of probability laws on ${\mathbb R}$ such that

 $\mathbb{E}[X^i] = c_i, \ \forall i = 1, \ldots, k.$

-∢ ⊒ ▶

We reformulate the problem in the following manner :

$\sup_{q\in\mathcal{Q}}\Phi(q)$

where Q denotes the set of quantile functions of probability laws on \mathbb{R} with the given moment constraints, and where Φ is such that $\rho(X) = \Phi(q_X)$.

글 🖌 🖌 글 🕨

A result

Theorem

Assume that Φ is **linear**, then

$$\sup_{q\in\mathcal{Q}}\Phi(q)=\sup_{q\in\mathcal{Q}_k^*}\Phi(q)$$

where Q_k^* denotes the set of quantile functions of atomic probability measures on \mathbb{R} with at most k + 1 atoms, and satisfying the moment constraints.

∃ ⊳

A result

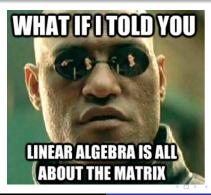
Idea of the proof.

- We first remark that Φ is continuous: Biagini and Fritteli (2009), On the extension of the Namioka-Klee theorem and on the Fatou property for Risk Measures.
- We approach every q ∈ Q by a q* ∈ Q* in the L^p norm. (Q* denotes the set of quantile functions of atomic measures with a finite number of atoms)
- The two previous points give us:

$$\sup_{q\in\mathcal{Q}}\Phi(q)=\sup_{q\in\mathcal{Q}^*}\Phi(q)$$

A result

Then to reduce the supremum only over Q^{*}_k we follow the explicit contruction given in by Hoeffding, *The extrema of the expected value of a function of independent random variables*, Ann. Math. Statist. (1955).



Application to the case of distortion risk measures:

A distortion risk measure is law invariant and can be written

$$\Phi(\overline{q}) = \int_0^1 \overline{q}(u) d\psi(u)$$

where ψ is a given distortion function. It is a **linear** functional in the \overline{q} variable !

∃ >

Assume that k = 2. To obtain a superior bound, all one need to compute is:

$$\begin{split} \sup_{\overline{q}\in\overline{\mathcal{Q}}_{m_1,m_2}} \Phi(\overline{q}) \\ &= \sup_{p_i,a_i} (\psi(p_1)a_3 + a_2\{\psi(p_1+p_2) - \psi(p_1)\} + a_3\{1 - \psi(p_1+p_2)\}) \\ \text{under the constraints} \end{split}$$

$$egin{pmatrix} 1 & 1 & 1 \ a_1 & a_2 & a_3 \ a_1^2 & a_2^2 & a_3^2 \end{pmatrix} egin{pmatrix} p_1 \ p_2 \ p_3 \end{pmatrix} = egin{pmatrix} 1 \ m_1 \ m_2 \end{pmatrix}$$

∢ ≣ ≯

< ≣⇒

Completely different approach to compute the former supremum :

Let μ and ν be two arbitrary probability measures on \mathbb{R} . We say that μ dominates ν in the *first order stochastic dominance* if

 $\int g d\mu \geq \int g d
u$ for all continuous, bounded and increasing function g.

We say that μ dominates ν in the second order stochastic dominance if

$$\int g d\mu \geq \int g d
u$$
 for all bounded, increasing and concave function $g.$

The distorsion risk measures **preserve** the first and second order stochastic dominance.

• Question : Can we find a maximal distribution for the first order stochastic dominance?

The distorsion risk measures **preserve** the first and second order stochastic dominance.

- Question : Can we find a maximal distribution for the first order stochastic dominance?
- Yes: Results from the 80's summarized in Hurlimann, *Extremal* moment methods and stochastic orders: application in actuarial science, Bol. Asoc. Mat. Venez. (2008).

The distorsion risk measures **preserve** the first and second order stochastic dominance.

- Question : Can we find a maximal distribution for the first order stochastic dominance?
- Yes: Results from the 80's summarized in Hurlimann, *Extremal* moment methods and stochastic orders: application in actuarial science, Bol. Asoc. Mat. Venez. (2008).

When k = 2, $m_1 = 0$ and $m_2 = 1$, the worst case first order stochastic dominance cumulative distribution is given by $F(x) = \frac{x^2}{1+x^2}$.

Introduction Main result Application to particular cases

Application to DRM

We directly deduce that

$$\sup_{\overline{q}\in\overline{\mathcal{Q}}_{0,1}}\Phi(\overline{q})=\int_0^1\sqrt{\frac{1-u}{u}}d\psi(u)$$

Nabil Kazi-Tani Optimal Bounds for Risk Measures

프 + + 프 +

э

We can retrieve the following classical result:

For $\psi(u) := \mathbf{1}_{u \ge \alpha}$, $\alpha \in (0, 1)$, we have $\sup_{X \in \mathcal{L}_{\mu,\sigma}} VaR_{\alpha}(X) = \mu + \sigma \sqrt{\frac{1 - \alpha}{\alpha}}$

프 🖌 🛪 프 🕨

We can retrieve the following classical result:

For $\psi(u) := \mathbf{1}_{u \ge \alpha}$, $\alpha \in (0, 1)$, we have $\sup_{X \in \mathcal{L}_{\mu,\sigma}} VaR_{\alpha}(X) = \mu + \sigma \sqrt{\frac{1 - \alpha}{\alpha}}$

Free bonus:

$$\inf_{X \in \mathcal{L}_{\mu,\sigma}} VaR_{\alpha}(X) = \mu - \sigma \sqrt{\frac{\alpha}{1 - \alpha}}$$

Another classical result:

For $\psi(u) := \min(\frac{u}{\alpha}, 1)$, $\alpha \in (0, 1)$, we have $\sup_{X \in \mathcal{L}_{\mu,\sigma}} AVaR_{\alpha}(X) = \mu + \sigma \sqrt{\frac{1 - \alpha}{\alpha}}$

(E) < E) </p>

More general constraints

Let u_0, \ldots, u_n denote real-valued, continuous functions defined on \mathbb{R} . (u_0, \ldots, u_n) form a Tchebycheff system (or a T-system for short) if for any (t_0, \ldots, t_n) with $t_0 < t_1 < \cdots < t_n$, we have $det(A(t_0, \ldots, t_n)) > 0$ where

$$A(t_0,\ldots,t_n) := \begin{pmatrix} u_0(t_0) & u_0(t_1) & \cdots & u_0(t_n) \\ u_1(t_0) & u_1(t_1) & \cdots & u_1(t_n) \\ \vdots & \vdots & \ddots & \vdots \\ u_n(t_0) & u_n(t_1) & \cdots & u_n(t_n) \end{pmatrix}.$$

More general constraints

Let u_0, \ldots, u_n denote real-valued, continuous functions defined on \mathbb{R} . (u_0, \ldots, u_n) form a Tchebycheff system (or a T-system for short) if for any (t_0, \ldots, t_n) with $t_0 < t_1 < \cdots < t_n$, we have $det(A(t_0, \ldots, t_n)) > 0$ where

$$A(t_0,\ldots,t_n) := \begin{pmatrix} u_0(t_0) & u_0(t_1) & \cdots & u_0(t_n) \\ u_1(t_0) & u_1(t_1) & \cdots & u_1(t_n) \\ \vdots & \vdots & \ddots & \vdots \\ u_n(t_0) & u_n(t_1) & \cdots & u_n(t_n) \end{pmatrix}$$

The previous Theorem extends to the case where $\{g_i, i \in I\}$ forms a T-system.

프 🖌 🔺 프 🕨

Thank you for your attention

ヨト イヨト