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Introduction Strassen’s Theorem

▸ Let (Mn)n∈N be a martingale and φ ∶ R→ R convex. Then by Jensen’s
inequality we have that

E[φ(Ms)] ≤ E[φ(Mt)], s ≤ t,

∫
R
φ(x) dµs(x) ≤ ∫

R
φ(x) dµt(x), s ≤ t.

▸ Let µ1 and µ2 be two probability measures on R with finite mean (M). Then
µ1 is smaller in convex order than µ2 (µ1 ≤c µ2) if

∫
R
φ(x) dµ1(x) ≤ ∫

R
φ(x) dµ2(x),

for all convex functions φ ∶ R→ R.
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Introduction Strassen’s Theorem

Strassen’s Theorem

Strassen’s Theorem, 1965

Let (µn)n∈N be a sequence in M. Then there exists a martingale (Mn)n∈N such
that Mn ∼ µn if and only if µs ≤c µt for all s ≤ t.

Lemma

Let (µn)n∈N be a sequence in M and define the call function of µn as

Rµn(x) = ∫R
(y − x)+ µn(dy), x ∈ R.

Then µs ≤c µt for all s ≤ t if and only if (µn)n∈N has constant mean and

Rµs(x) ≤ Rµt(x), for all x ∈ R.
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I.C. Gülüm (Vienna UT) June 29, 2016 3 / 19



Introduction Application

Application - Classical Problem

▸ Given a finite set of European call option prices rt,i, with maturity
t ∈ {1, . . . , T} and strike Ki ∈ {K1, . . . ,KN} and given the price of the
underlying asset S0, when does there exist an arbitrage-free model which
generates these prices?

▸ A model is a probability space (Ω,F ,P) and a non-negative martingale S
such that

E[(St −Ki)+] = rt,i.

Literature:

▸ Carr and Madan (2005) → necessary and sufficient conditions

▸ Davis and Hobson (2007) → arbitrage strategies

▸ Cousot (2007) → positive bid-ask spread on options (but not on the
underlying).
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Introduction Application

Conditions for single maturities
▸ For each maturity t the linear interpolation Lt of the points (Ki, rt,i) has to

be convex, decreasing and all slopes of Lt have to be in [−1,0].
▸ Intuition: for every random variable St the function K ↦ E[(St −K)+] has

these properties.
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Introduction Application

Intertemporal conditions
▸ For all strikes Ki we have that rt,i ≤ rt+1,i.
▸ Intuition: for every martingale S = (St)t∈{0,...,T} the function
t↦ E[(St −K)+] is increasing by Strassen’s theorem.

0 5 10 15

0
2

4
6

8

p
ri
ce
s

Stockprice
Maturity 1
Maturity 2
Maturity 3
Lt
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Introduction Application

Necessary and Sufficient Conditions

▸ For all maturities t

0 ≥
rt,i+1 − rt,i
Ki+1 −Ki

≥
rt,i − rt,i−1
Ki −Ki−1

≥ −1, for i ∈ {1, . . . ,N − 1},

and
rt,i = rt,i−1 implies rt,i = 0, for i ∈ {1, . . . ,N}.

▸ Note that we set K0 = 0 and rt,0 = S0 for all t ∈ {1, . . . , T − 1}.

▸ For all strikes Ki

rt,i ≤ rt+1,i, t ∈ {1, . . . , T − 1}.
▸ It is possible to state arbitrage strategies if any of these conditions fails.
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Markets with Transaction costs

Application - New Problem

▸ Additional to the classical Problem assume that there is a positive bid-ask
spread on the underlying (St ≤ St).

▸ What is the payoff of a European call option at maturity t?

Is it (St −K)+? or (St −K)+?

▸ We assume that there is a third process (SCt )t∈{0,...,T} such that

St ≤ SCt ≤ St and such that the payoff is given by

(SCt −K)+.

Options are cash-settled.

▸ An arbitrage-free model is a probability space (Ω,F ,P) and four
non-negative processes:

S,S,SC , S∗.

▸ S∗ is a martingale which evolves in the bid-ask spread: St ≤ S∗t ≤ St.
▸ SC is not a traded asset, hence SC does not have to be a martingale.
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Markets with Transaction costs Unbounded Bid-Ask spread

Unbounded Bid-Ask Spread

▸ If we allow models where the bid ask can get arbitrarily large than there are
no intertemporal conditions.

▸ For all maturities t the following conditions are then necessary and sufficient
for the existence of arbitrage-free models:

0 ≥
rt,i+1 − rt,i
Ki+1 −Ki

≥
rt,i − rt,i−1
Ki −Ki−1

≥ −1, for i ∈ {2, . . . ,N − 1},

and
rt,i = rt,i−1 implies rt,i = 0, for i ∈ {2, . . . ,N}.

▸ Note that the initial bid and ask price of the underlying (S0, S0) do not
appear!
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Markets with Transaction costs Bounded Bid-Ask spread

Bounded Bid-Ask Spreads

▸ We focus on models where the bid-ask spread is bounded: there has to exist
ε ≥ 0 and p ∈ [0,1] such that

P(St − St > ε) ≤ p.

▸ In particular, P(∣SCt − S∗t ∣ > ε) ≤ p.

▸ The option prices allow us to construct measures which correspond to the law
of SC (temporal conditions).

▸ Strassen’s theorem is not applicable anymore since SC does not have to be a
martingale.
But, SC has to be close to a martingale.
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A variant of Strassen’s Theorem

Problem Formulation
Let d be a metric on M and ε > 0.

Formulation 1

Given a sequence (µn)n∈N in M, when does there exist a martingale (Mn)n∈N
such that

d(µn, LMn) ≤ ε, for all n ∈ N?

Formulation 2

Given a sequence (µn)n∈N in M, when does there exist a sequence (νn)n∈N which
is increasing in convex order (peacock) such that

d(µn, νn) ≤ ε, for all n ∈ N?

We want to solve this problem for different d:
▸ Infinity Wasserstein distance
▸ Modified Prokhorov distance
▸ Prokhorov distance, Lévy distance, modified Lévy distance, Stop-Loss

distance,. . .
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A variant of Strassen’s Theorem

Infinity Wasserstein distance

▸ The modified Prokhorov distance with parameter p ∈ [0,1] is the mapping
dPp ∶ M ×M→ [0,∞], defined by

dPp (µ, ν) ∶= inf{h > 0 ∶ ν(A) ≤ µ(Ah) + p, for all closed sets A ⊆ R}

where Ah = {x ∈ S ∶ infa∈A ∣x − a∣ ≤ h}.

▸ The modified Prokhorov distance is not a metric in general!

▸ The infinity Wasserstein distance W∞ is defined by

W∞(µ, ν) = dP0 (µ, ν).
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A variant of Strassen’s Theorem

Minimal distance coupling

Theorem (Strassen 1965, Dudley 1968)

Given measures µ, ν on R, p ∈ [0,1], and ε > 0 there exists a probability
space (Ω,F ,P) with random variables X ∼ µ and Y ∼ ν such that

P(∣X − Y ∣ > ε) ≤ p,

if and only if
dPp (µ, ν) ≤ ε.

This is exactly what we need: we are interested in models where

P(∣SCt − S∗t ∣ > ε) ≤ p.
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A variant of Strassen’s Theorem

First answer

Question

Given a sequence (µn)n∈N in M, p ∈ [0,1] and ε > 0 when does there exist a
peacock (νn)n∈N such that

dPp (µn, νn) ≤ ε, for all n ∈ N?

▸ Answer: If p > 0, then there always exists such a peacock!

▸ Conclusion: if we allow models where P(St − St > ε) ≤ p, for p ∈ (0,1].
Then for all maturities t the following conditions are necessary and sufficient
for the existence of arbitrage-free models:

0 ≥
rt,i+1 − rt,i
Ki+1 −Ki

≥
rt,i − rt,i−1
Ki −Ki−1

≥ −1, for i ∈ {2, . . . ,N − 1},

and
rt,i = rt,i−1 implies rt,i = 0, for i ∈ {2, . . . ,N}.
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for the existence of arbitrage-free models:

0 ≥
rt,i+1 − rt,i
Ki+1 −Ki

≥
rt,i − rt,i−1
Ki −Ki−1

≥ −1, for i ∈ {2, . . . ,N − 1},

and
rt,i = rt,i−1 implies rt,i = 0, for i ∈ {2, . . . ,N}.
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A variant of Strassen’s Theorem

Solution for W∞ (p = 0), Part 1

▸ Let B∞(µ, ε) be the closed ball wrt. W∞ with center µ and radius ε.
Let Mm be the set of all probability measures on R with mean m ∈ R.

▸ Given ε > 0, a measure µ ∈ M and m ∈ R such that B∞(µ, ε) ∩Mm ≠ ∅
there exist unique measures S(µ), T (µ) ∈ B∞(µ, ε) ∩Mm such that

S(µ) ≤c ν ≤c T (µ) for all ν ∈ B∞(µ, ε) ∩Mm.

▸ The call functions of S(µ) and T (µ) are given by

Rmin
µ (x;m, ε) = RS(µ)(x) = (m +Rµ(x − ε) − (Eµ + ε)) ∨Rµ(x + ε),

Rmax
µ (x;m, ε) = RT (µ)(x) = conv(m +Rµ(⋅ + ε) − (Eµ − ε),Rµ(⋅ − ε))(x).
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A variant of Strassen’s Theorem

Solution for W∞ (p = 0), Part 2
Question

Given a sequence (µn)n∈N in M and ε > 0 when does there exist a peacock
(νn)n∈N such that

W∞(µn, νn) = dP0 (µ, ν) ≤ ε, for all n ∈ N?

Answer: if and only if

I ∶= ⋂
n∈N

[Eµn − ε,Eµn + ε] ≠ ∅,

and there exists m ∈ I such that for all N ∈ N, x1, . . . , xN ∈ R, we have

Rmin
µ1

(x1;m, ε) +
N

∑
n=2

(Rµn(xn + εσn) −Rµn(xn−1 + εσn)) ≤ Rmax
µN+1

(xN ;m, ε),

where σn = sgn(xn−1 − xn).
If ε = 0 this simplifies to

Rµ1(x) ≤ Rµ2(x) ≤ ⋅ ⋅ ⋅ ≤ RµN+1
(x) ≤ . . . .
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Application of the new results

Necessary and Sufficient Conditions for single maturities

▸ If we restrict ourselves to models where P(St − St > ε) = 0 we get the
following temporal conditions:

0 ≥
rt,i+1 − rt,i
Ki+1 −Ki

≥
rt,i − rt,i−1
Ki −Ki−1

≥ −1, for i ∈ {2, . . . ,N − 1},

and
rt,i = rt,i−1 implies rt,i = 0, for i ∈ {2, . . . ,N}.

▸
rt,2 − rt,1
K2 −K1

≥
rt,1 − S0

K1 − ε
and

rt,1 − S0

K1 + ε
≥ −1.
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Application of the new results

Necessary Conditions for multiple maturities
▸ If we restrict ourselves to models where P(St − St > ε) = 0 then we get the

following intertemporal conditions:

▸ If Ki + ε <Kj − εσs <Kl + ε, s ≤ t and s ≤ u then the following conditions are
necessary:

rCV Bs (σs,Kj) − rt,i
(Kj − εσs) − (Ki + ε)

≤
ru,l − rCV Bs (σs,Kj)
Kl + ε − (Ks − εσs)

,

rCV Bs (σs,Kj) − rt,i
(Kj − εσs) − (Ki + ε)

≤ 0, and

ru,l − rCV Bs (σs,Kj)
Kl + ε − (Ks − εσs)

≥ −1

where

rCV Bs = r1,j1 +
s

∑
t=2

(rt,jt − rt,it−1) + 2ε1{σ1=−1}.
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Application of the new results

Conclusion

▸ If there are no transaction costs on the underlying then necessary sufficient
conditions can be derived from Strassen’s theorem.

▸ If there is no bound on the bid-ask spread on the underlying there are no
intertemporal conditions.

▸ If the bid-ask spread is bounded by a constant we need a generalization of
Strassen’s theorem.
It can be used to derive consistency conditions.
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